On the complexity of constructing a minmax regret solution for the two-machine flow shop problem under the interval uncertainty

被引:1
|
作者
Shafransky, Yakov [1 ]
Shinkarevich, Viktor [2 ]
机构
[1] NAS Belarus, United Inst Informat Problems, Minsk, BELARUS
[2] Belarusian State Univ, Minsk, BELARUS
关键词
Minmax regret; Interval uncertainty; Two-machine flow shop; NP-hardness;
D O I
10.1007/s10951-020-00663-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We prove the NP-hardness of constructing a minmax regret solution for the two-machine flow shop problem under the interval uncertainty of the job processing times. The problem complexity status has been an open question for over the past 20 years. We establish the NP-hardness of this problem using a so-called alternative scheme for proving the NP-hardness of optimization problems. Also, we show that the problem is non-approximable in polynomial time.
引用
收藏
页码:745 / 749
页数:5
相关论文
共 50 条
  • [31] A two-machine no-wait flow shop problem with two competing agents
    Azerine, Abdennour
    Boudhar, Mourad
    Rebaine, Djamal
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (01) : 168 - 199
  • [32] Consideration of transportation lags in a two-machine Flow shop scheduling problem
    Jolai, F.
    Abedinnia, H.
    SCIENTIA IRANICA, 2013, 20 (06) : 2215 - 2223
  • [33] Three heuristic procedures for the stochastic, two-machine flow shop problem
    Baker, Kenneth R.
    Trietsch, Dan
    JOURNAL OF SCHEDULING, 2011, 14 (05) : 445 - 454
  • [34] Lower Bounds for the Two-Machine Flow Shop Problem with Time Delays
    Mkadem, Mohamed Amine
    Moukrim, Aziz
    Serairi, Mehdi
    OPERATIONS RESEARCH PROCEEDINGS 2016, 2018, : 527 - 533
  • [35] Schedule execution for two-machine flow-shop with interval processing times
    Matsveichuk, N. M.
    Sotskov, Yu. N.
    Egorova, N. G.
    Lai, T. -C.
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (5-6) : 991 - 1011
  • [36] A fix-and-optimize heuristic for the minmax regret shortest path arborescence problem under interval uncertainty
    Carvalho, Iago A.
    Noronha, Thiago F.
    Duhamel, Christophe
    Vieira, Luiz F. M.
    dos Santos, Vinicius F.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2023, 30 (02) : 1120 - 1143
  • [37] Minmax regret bottleneck problems with solution-induced interval uncertainty structure
    Averbakh, Igor
    DISCRETE OPTIMIZATION, 2010, 7 (03) : 181 - 190
  • [38] Two-machine interval shop scheduling with time lags
    Xiandong Zhang
    Steef van de Velde
    Journal of Scheduling, 2015, 18 : 359 - 368
  • [39] Two-machine interval shop scheduling with time lags
    Zhang, Xiandong
    van de Velde, Steef
    JOURNAL OF SCHEDULING, 2015, 18 (04) : 359 - 368
  • [40] ON COMPLEXITY OF TWO-MACHINE ROUTING PROPOTIONATE OPEN SHOP
    Pyatkin, Artem Valerievich
    Chernykh, Ilya Dmitrievich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (02): : 528 - 539