The formation mechanism of CO2 and its conversion in the process of coal gasification under arc plasma conditions

被引:8
|
作者
He, Xiaojun
Zheng, Mingdong
Qiu, Jieshan
Zhao, Zongbin
Ma, Tengcai
机构
[1] Dalian Univ Technol, Carbon Res Lab, Sch Chem Engn, State Key Lab Fine Chem, Dalian 116012, Peoples R China
[2] Anhui Univ Technol, Sch Chem & Chem Engn, Maanshan 243002, Peoples R China
[3] Dalian Univ Technol, State Key Lab Mat Modificat Laser Ion & Electron, Dalian 116023, Peoples R China
来源
PLASMA SOURCES SCIENCE & TECHNOLOGY | 2006年 / 15卷 / 02期
关键词
D O I
10.1088/0963-0252/15/2/009
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The carbon dioxide (CO2) formation mechanism and co-conversion of CO2 with coal was investigated in the process of coal gasification in a steam medium at atmospheric pressure under arc plasma conditions in a tube-type setup. The arc plasma was diagnosed in situ by optical emission spectroscopy and the gas products were analysed by gas chromatography. CO2 yields are correlated with the quantitative emission peak intensity of the active species in plasma when the operating parameter is changed. The results show that the greater the emission peak intensity of the CH radicals, C-2 radicals, OH radicals or O atoms, the smaller the CO2 yield is, which means that the CO2 formation process is inhibited by increasing the concentration of the mentioned active species under arc plasma conditions. On the basis of the diagnosis results, co-conversion of CO2 and coal in a steam medium under plasma conditions was carried out in the same setup and the results show that CO2 conversion reaches 88.6% while the concentration of CO + H-2 reaches 87.4%; at the same time, coal conversion is in the range 54.7 - 68.7%, which proves that co-conversion of CO2 and coal in a steam medium under plasma conditions might be a prospective way to utilize CO2 and the production of synthesis gas.
引用
收藏
页码:246 / 252
页数:7
相关论文
共 50 条
  • [31] CO enhancement in coal gasification with CO2: Effect of minerals
    Fu, Xiaolan
    Zhang, Xiaoguo
    Ren, Danni
    Lu, Wei
    Yuan, Shenfu
    FUEL, 2025, 379
  • [32] Investigation of the reaction mechanism for supercritical H2O/CO2 gasification of coal
    Zhang, Fan
    Chen, Wenjing
    Wang, Shuzhong
    Yang, Jianqiao
    Li, Yanhui
    ENERGY, 2025, 320
  • [33] Nanomaterials for adsorption and conversion of CO2 under gentle conditions
    Lu, Chao
    Shi, Xiaoyang
    Liu, Yilun
    Xiao, Hang
    Li, Junjie
    Chen, Xi
    MATERIALS TODAY, 2021, 50 : 385 - 399
  • [34] A brief review of CO2 utilization for alkali carbonate gasification and biomass/coal co-gasification: Reactivity, products and process
    Abdalazeez, Atif
    Li, Tianle
    Wang, Wenju
    Abuelgasim, Siddig
    JOURNAL OF CO2 UTILIZATION, 2021, 43
  • [35] Pyrolysis and gasification modelling of underground coal gasification and the optimisation of CO2 as a gasification agent
    Duan, Tian-Hong
    Lu, Cai-Ping
    Xiong, Sheng
    Fu, Zhen-Bin
    Chen, Ya-Zhou
    FUEL, 2016, 183 : 557 - 567
  • [36] CO2 Capture and Storage in Coal Gasification Projects
    Rao, Anand B.
    Phadke, Pranav C.
    WORKSHOP ON CHALLENGES AND OPPORTUNITIES OF UNDERGROUND COAL GASIFICATION IN INDIA (UCG-2017), 2017, 76
  • [37] Kinetic Study of CO2 Gasification of Coal Chars
    Zhao, Lihong
    Chu, Xijie
    Cheng, Shaojuan
    ADVANCES IN CHEMICAL ENGINEERING II, PTS 1-4, 2012, 550-553 : 2754 - 2757
  • [38] Process Optimization and CO2 Emission Analysis of Coal/Biomass Gasification Integrated with a Chemical Looping Process
    Sornumpol, Ratikorn
    Saebea, Dang
    Arpornwichanop, Amornchai
    Patcharavorachot, Yaneeporn
    ENERGIES, 2023, 16 (06)
  • [39] CO2 GASIFICATION KINETICS OF 2 ALBERTA COAL CHARS
    KOVACIK, G
    CHAMBERS, A
    OZUM, B
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1991, 69 (03): : 811 - 815
  • [40] Kinetic Studies of the Catalytic Low Rank Coal Gasification under CO2 Atmosphere
    Park, Chan Young
    Park, Ji Yun
    Lee, Si Hoon
    Rhu, Ji Ho
    Han, Moon Hee
    Rhee, Young Woo
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2012, 50 (06): : 1086 - 1092