机构:
Univ Washington, Dept Math, Padelford Hall, Seattle, WA 98195 USAUniv Washington, Dept Math, Padelford Hall, Seattle, WA 98195 USA
Athreya, Jayadev S.
[1
]
Cheung, Yitwah
论文数: 0引用数: 0
h-index: 0
机构:
San Francisco State Univ, Dept Math, Thornton Hall 937,1600 Holloway Ave, San Francisco, CA 94132 USAUniv Washington, Dept Math, Padelford Hall, Seattle, WA 98195 USA
Cheung, Yitwah
[2
]
Masur, Howard
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Dept Math, 5734 South Univ Ave, Chicago, IL 60615 USAUniv Washington, Dept Math, Padelford Hall, Seattle, WA 98195 USA
Masur, Howard
[3
]
Ruhr, Rene
论文数: 0引用数: 0
h-index: 0
机构:
Technion, Fac Math, IL-32000 Haifa, IsraelUniv Washington, Dept Math, Padelford Hall, Seattle, WA 98195 USA
Ruhr, Rene
[4
]
机构:
[1] Univ Washington, Dept Math, Padelford Hall, Seattle, WA 98195 USA
[2] San Francisco State Univ, Dept Math, Thornton Hall 937,1600 Holloway Ave, San Francisco, CA 94132 USA
[3] Univ Chicago, Dept Math, 5734 South Univ Ave, Chicago, IL 60615 USA
Let H denote a connected component of a stratum of translation surfaces. We show that the Siegel-Veech transform of a bounded compactly supported function on R-2 is in L-2(H, mu), where mu is the Lebesgue measure on H, and give applications to bounding error terms for counting problems for saddle connections. We also propose a new invariant associated to SL(2, R)-invariant measures on strata satisfying certain integrability conditions.
机构:
Department of Mathematics, University of Chicago, Chicago, 60637, ILDepartment of Mathematics, University of Chicago, Chicago, 60637, IL
Eskin A.
Zorich A.
论文数: 0引用数: 0
h-index: 0
机构:
Institut de mathématiques de Jussieu, Institut Universitaire de France, Université Paris 7, ParisDepartment of Mathematics, University of Chicago, Chicago, 60637, IL