Neutrino trapping and accretion models for gamma-ray bursts

被引:288
|
作者
Di Matteo, T
Perna, R
Narayan, R
机构
[1] Max Planck Inst Astrophys, D-85740 Garching, Germany
[2] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[3] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[4] Harvard Soc Fellows, Cambridge, MA 02138 USA
[5] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
来源
ASTROPHYSICAL JOURNAL | 2002年 / 579卷 / 02期
关键词
accretion; accretion disks; black hole physics; gamma rays : bursts; neutrinos; scattering;
D O I
10.1086/342832
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Many models of gamma-ray bursts (GRBs) invoke a central engine consisting of a black hole of a few solar masses accreting matter from a disk at a rate of a fraction to a few solar masses per second. Popham et al. and Narayan et al. have shown that, for (M) over dot greater than or similar to 0.1 M. s(-1), accretion proceeds via neutrino cooling and neutrinos can carry away a significant amount of energy from the inner regions of the disks. We improve on these calculations by including a simple prescription for neutrino transfer and neutrino opacities in such regions. We find that the flows become optically thick to neutrinos inside a radius R similar to 6R(S)-40 R-S for (M) over dot in the range of 0.1-10 M. s(-1), where R-S is the black hole Schwarzchild radius. Most of the neutrino emission comes from outside this region, and the neutrino luminosity stays roughly constant at a value L-nu similar to 10(53) ergs s(-1). We show that, for (M) over dot greater than or similar to 1 M. s(-1), neutrinos are sufficiently trapped that energy advection becomes the dominant cooling mechanism in the flow. These results imply that nu(ν) over bar annihilation in hyperaccreting black holes is an inefficient mechanism for liberating large amounts of energy. Extraction of rotational energy by magnetic processes remains the most viable mechanism.
引用
下载
收藏
页码:706 / 715
页数:10
相关论文
共 50 条
  • [41] RADIATIVE TRANSFER MODELS FOR GAMMA-RAY BURSTS
    Vurm, Indrek
    Beloborodov, Andrei M.
    ASTROPHYSICAL JOURNAL, 2016, 831 (02):
  • [42] NEUTRON STARQUAKE MODELS FOR GAMMA-RAY BURSTS
    BLAES, O
    BLANDFORD, R
    GOLDREICH, P
    MADAU, P
    ASTROPHYSICAL JOURNAL, 1989, 343 (02): : 839 - 848
  • [43] Gamma-Ray Bursts: Multiwavelength Investigations and Models
    Pozanenko, A. S.
    Barkov, M., V
    Minaev, P. Yu
    Volnova, A. A.
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2021, 47 (12): : 791 - 830
  • [44] Observations and theoretical models of gamma-ray bursts
    Castro-Tirado, AJ
    EXPLORING THE GAMMA-RAY UNIVERSE, 2001, 459 : 367 - 374
  • [45] 2 POPULATIONS AND MODELS OF GAMMA-RAY BURSTS
    KATZ, JI
    ASTROPHYSICAL JOURNAL, 1994, 422 (01): : 248 - 259
  • [46] Neutrino afterglow from gamma-ray bursts:: ∼1018 eV
    Waxman, E
    Bahcall, JN
    ASTROPHYSICAL JOURNAL, 2000, 541 (02): : 707 - 711
  • [47] Models for "optically dark" gamma-ray bursts
    Lamb, DQ
    THIRD ROME WORKSHOP ON GAMMA-RAY BURSTS IN THE AFTERGLOW ERA, 2004, 312 : 175 - 180
  • [48] Impact of secondary acceleration on the neutrino spectra in gamma-ray bursts
    Winter, W.
    Tjus, J. Becker
    Klein, S. R.
    ASTRONOMY & ASTROPHYSICS, 2014, 569
  • [49] Estimating the neutrino flux from choked gamma-ray bursts
    Fasano, Michela
    Celli, Silvia
    Guetta, Dafne
    Capone, Antonio
    Zegarelli, Angela
    Di Palma, Irene
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (09):
  • [50] Neutrino-driven explosions in gamma-ray bursts and hypernovae
    Fryer, CL
    Mészáros, P
    ASTROPHYSICAL JOURNAL, 2003, 588 (01): : L25 - L28