Lithium isotope fractionation in the southern Cascadia subduction zone

被引:87
|
作者
Magna, Tomas
Wiechert, Uwe
Grove, Timothy L.
Halliday, Alex N.
机构
[1] ETH, Inst Isotope Geochem & Mineral Resources, CH-8092 Zurich, Switzerland
[2] Free Univ Berlin, Inst Geol Wissensch, AB Geochem Mineral Petrol, D-12249 Berlin, Germany
[3] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[4] Univ Oxford, Dept Earth Sci, Oxford OX1 3PR, England
关键词
lithium isotopes; fluids; subduction zone; mantle wedge; isotope fractionation; Mt. Shasta region;
D O I
10.1016/j.epsl.2006.08.019
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present lithium (Li) abundances and isotope compositions for a suite of anhydrous olivine tholeiites (HAOTs) and hydrous basalt-andesitic (BA) lavas from the Mt. Shasta and Medicine Lake regions, California. The values of delta(7) Li vary from +0.9 parts per thousand to +6.4 parts per thousand and correlate inversely with distance from the trench. These data are consistent with continuous isotope fractionation of Li during dehydration of the subducted oceanic lithosphere, an interpretation corroborated by uniformly high pre-eruptive H2O contents in basaltic andesites accompanied by high Li, Rb, Sr, Ba and Pb abundances. The subduction-derived component that was added to these hydrous magmas is shown to be very similar beneath both Mt. Shasta and Medicine Lake volcanoes despite characteristically distinct Li isotope compositions in the magmas themselves. More evolved andesites and dacites from Mt. Shasta have delta(7) Li from +2.8 to +6.9 parts per thousand which is identical with the range obtained for HAOTs and BA lavas from Mt. Shasta. Therefore, Li isotopes do not provide evidence for any other crustal component admixed to Mt. Shasta andesites or dacites during magmatic differentiation and magma mixing in the crust., (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:428 / 443
页数:16
相关论文
共 50 条
  • [31] Periodic slow earthquakes from the Cascadia subduction zone
    Miller, MM
    Melbourne, T
    Johnson, DJ
    Sumner, WQ
    SCIENCE, 2002, 295 (5564) : 2423 - 2423
  • [32] Crustal anisotropy in a subduction zone forearc: Northern Cascadia
    Matharu, G.
    Bostock, M. G.
    Christensen, N. I.
    Tromp, Jeroen
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2014, 119 (09) : 7058 - 7078
  • [33] Rethinking turbidite paleoseismology along the Cascadia subduction zone
    Atwater, Brian F.
    Carson, Bobb
    Griggs, Gary B.
    Johnson, H. Paul
    Salmi, Marie S.
    GEOLOGY, 2014, 42 (09) : 827 - U118
  • [34] A continuum of stress, strength and slip in the Cascadia subduction zone
    Wech, Aaron G.
    Creager, Kenneth C.
    NATURE GEOSCIENCE, 2011, 4 (09) : 624 - 628
  • [35] A continuum of stress, strength and slip in the Cascadia subduction zone
    Aaron G. Wech
    Kenneth C. Creager
    Nature Geoscience, 2011, 4 : 624 - 628
  • [36] Volcano, Earthquake, and Tsunami Hazards of the Cascadia Subduction Zone
    Westby, Elizabeth G.
    Meigs, Andrew
    Goldfinger, Chris
    ELEMENTS, 2022, 18 (04) : 251 - 256
  • [38] New constraints on subduction zone structure in northern Cascadia
    Nicholson, T
    Bostock, M
    Cassidy, JF
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2005, 161 (03) : 849 - 859
  • [39] Equilibrium boron isotope fractionation during serpentinization and applications in understanding subduction zone processes
    Li, Yin-Chuan
    Wei, Hai-Zhen
    Palmer, Martin R.
    Ma, Jing
    Jiang, Shao-Yong
    Chen, Yi-Xiang
    Lu, Jian-Jun
    Liu, Xi
    CHEMICAL GEOLOGY, 2022, 609
  • [40] Mapping Mantle Flows and Slab Anisotropy in the Cascadia Subduction Zone
    Liang, Xuran
    Zhao, Dapeng
    Hua, Yuanyuan
    Xu, Yi-Gang
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (23)