A variational integrators approach to second order modeling and identification of linear mechanical systems

被引:9
|
作者
Bruschetta, Mattia [1 ]
Picci, Giorgio [1 ]
Saccon, Alessandro [2 ]
机构
[1] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy
[2] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
关键词
Discrete mechanical systems; Variational integrators; Second order models; Subspace identification; TIME; TRANSFORM;
D O I
10.1016/j.automatica.2013.12.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The theory of variational integration provides a systematic procedure to discretize the equations of motion of a mechanical system, preserving key properties of the continuous time flow. The discrete-time model obtained by variational integration theory inherits structural conditions which in general are not guaranteed under general discretization procedures. We discuss a simple class of variational integrators for linear second order mechanical systems and propose a constrained identification technique which employs simple linear transformation formulas to recover the continuous time parameters of the system from the discrete-time identified model. We test this approach on a simulated eight degrees of freedom system and show that the new procedure leads to an accurate identification of the continuous-time parameters of second-order mechanical systems starting from discrete measured data. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:727 / 736
页数:10
相关论文
共 50 条
  • [1] Application of Variational Integrators in Modeling the Dynamics of Mechanical Systems
    Moiseev, Ilya S.
    Zhilenkov, Anton A.
    PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, : 554 - 558
  • [2] HIGH ORDER VARIATIONAL INTEGRATORS IN THE OPTIMAL CONTROL OF MECHANICAL SYSTEMS
    Campos, Cedric M.
    Ober-Bloebaum, Sina
    Trelat, Emmanuel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (09) : 4193 - 4223
  • [3] High Order Variational Integrators: A Polynomial Approach
    Campos, Cedric M.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 4 : 249 - 258
  • [4] Variational Integrators on Manifolds for Constrained Mechanical Systems
    Lin, Ziying
    Li, Hongchen
    Ding, Ye
    Zhu, Xiangyang
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2024, 91 (07):
  • [5] Variational Integrators for Stochastic Mechanical Hybrid Systems
    Tejaswi, K. C.
    Lee, Taeyoung
    IFAC PAPERSONLINE, 2024, 58 (06): : 149 - 154
  • [6] On variational integrators for optimal control of mechanical control systems
    Colombo, Leonardo
    de Diego, David Martin
    Zuccalli, Marcela
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 161 - 171
  • [7] On variational integrators for optimal control of mechanical control systems
    Leonardo Colombo
    David Martín de Diego
    Marcela Zuccalli
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 161 - 171
  • [8] Linear Phase Second Order Recursive Digital Integrators and Differentiators
    Jain, Madhu
    Gupta, Maneesha
    Jain, Nitin
    RADIOENGINEERING, 2012, 21 (02) : 712 - 717
  • [9] Scalable Variational Integrators for Constrained Mechanical Systems in Generalized Coordinates
    Johnson, Elliot R.
    Murphey, Todd D.
    IEEE TRANSACTIONS ON ROBOTICS, 2009, 25 (06) : 1249 - 1261
  • [10] Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems
    Kane, C
    Marsden, JE
    Ortiz, M
    West, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 49 (10) : 1295 - 1325