Lung Segmentation Using Proposed Deep Learning Architecture

被引:6
|
作者
Ayad, Hayder [1 ]
Ghindawi, Ikhlas Watan [2 ]
Kadhm, Mustafa S. [3 ]
机构
[1] Al Bayan Univ, Coll Business Adm, Baghdad, Iraq
[2] Al Mustansiriyah Univ, Coll Educ, Comp Sci Dept, Baghdad, Iraq
[3] Imam Jaafar Al Sadiq Univ, Fac Informat Technol, Baghdad, Iraq
关键词
CT images; lung segmentation; DNN; CNN; Softmax; RECOGNITION;
D O I
10.3991/ijoe.v16i15.17115
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Prediction and detection disease in human lungs are a very critical operation. It depends on an efficient view of the CT images to the doctors. It depends on an efficient view of the CT images to the doctors. The clear view of the images to clearly identify the disease depends on the segmentation that may save people lives. Therefore, an accurate lung segmentation system from CT image based on proposed CNN architecture is proposed. The system used weighted Softmax function the improved the segmentation accuracy. By experiments, the system achieved a high segmentation accuracy 98.9% using LIDC-IDRI CT lung images database.
引用
收藏
页码:141 / 147
页数:7
相关论文
共 50 条
  • [31] Improvements in Forest Segmentation Accuracy Using a New Deep Learning Architecture and Data Augmentation Technique
    He, Yan
    Jia, Kebin
    Wei, Zhihao
    [J]. REMOTE SENSING, 2023, 15 (09)
  • [32] Image Segmentation Using Deep Learning: A Survey
    Minaee, Shervin
    Boykov, Yuri Y.
    Porikli, Fatih
    Plaza, Antonio J.
    Kehtarnavaz, Nasser
    Terzopoulos, Demetri
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3523 - 3542
  • [33] Iris Segmentation Using Interactive Deep Learning
    Sardar, Mousumi
    Banerjee, Subhashis
    Mitra, Sushmita
    [J]. IEEE ACCESS, 2020, 8 : 219322 - 219330
  • [34] SEMANTIC SEGMENTATION OF TEXT USING DEEP LEARNING
    Lattisi, Tiziano
    Farina, Davide
    Ronchetti, Marco
    [J]. COMPUTING AND INFORMATICS, 2022, 41 (01) : 78 - 97
  • [35] Pediatric Sarcoma Segmentation using Deep Learning
    Erum, Louise
    Banke, Kirstine
    Borgwardt, Lise
    Hansen, Adam
    Hejgaard, Liselotte
    Andersen, Flemming
    Ladefoged, Claes
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [36] Aortic Valve Segmentation using Deep Learning
    Lai, Khin Wee
    Shoaib, Muhammad Ali
    Chuah, Joon Huang
    Nizar, Muhammad Hanif Ahmad
    Anis, Shazia
    Ching, Serena Low Woan
    [J]. 2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, : 528 - 532
  • [37] Automatic segmentation of deep endometriosis in the rectosigmoid using deep learning
    Figueredo, Weslley Kelson Ribeiro
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Diniz, Joao Otavio Bandeira
    Brandao, Alice
    Oliveira, Marco Aurelio Pinho
    [J]. IMAGE AND VISION COMPUTING, 2024, 151
  • [38] Efficient segmentation and classification of the lung carcinoma via deep learning
    Devi, M. M. Yamuna
    Jeyabharathi, J.
    Kirubakaran, S.
    Narayanan, Sreekumar
    Srikanth, T.
    Chakrabarti, Prasun
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) : 41981 - 41995
  • [39] Analysis of segmentation of lung parenchyma based on deep learning methods
    Tan, Wenjun
    Huang, Peifang
    Li, Xiaoshuo
    Ren, Genqiang
    Chen, Yufei
    Yang, Jinzhu
    [J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2021, 29 (06) : 945 - 959
  • [40] Deep Learning Models for Lung Nodule Segmentation: A Comparative Study
    Orazalina, Aliya
    Yoon, Heechul
    Choi, Sang-, II
    Yoon, Seokhyun
    [J]. JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024,