A novel stick-slip based linear actuator using bi-directional motion of micropositioner

被引:59
|
作者
Guo, Z. [1 ]
Tian, Y. [2 ,3 ]
Zhang, D. [2 ]
Wang, T. [1 ]
Wu, M. [1 ]
机构
[1] Civil Aviat Univ China, Aeronaut Engn Inst, Tianjin 300300, Peoples R China
[2] Tianjin Univ, Key Lab Mech Theory & Equipment Design, Minist Educ, Tianjin 300072, Peoples R China
[3] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Stick-slip; Lateral motion; Flexure-based mechanism; Modified sawtooth wave; DESIGN; MECHANISM; STAGE;
D O I
10.1016/j.ymssp.2019.03.025
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A stick slip based linear actuator was proposed in this paper, which applied the axial motion of the micropositioner to adjust the preload, and the lateral motion to drive the slider. The bidirectional motion of the micropositioner was realized through the asymmetric structure of a flexure-based mechanism, which includes two right circular flexure hinges and four leaf-spring flexure hinges. The static analysis, kinematic analysis and optimization design were successively implemented on the flexure-based mechanism. The Finite Element Analysis (FEA) proved the flexure-based mechanism could generate the bi-directional motion as designed. A prototype of the linear actuator was developed and the measuring system was constructed. A modified sawtooth wave with a cycloid fall curve was designed to improve the output property. The experimental results showed the modified sawtooth wave generated larger velocity than the traditional sawtooth wave in same driving voltages, fall times, driving frequencies and loads. The amplification coefficient and resolution of the proposed linear actuator in single step were 3.16 and 60 nm, respectively. The maximal velocity was 26.2 mm/s with the modified sawtooth wave in driving frequency of 500 Hz. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:37 / 49
页数:13
相关论文
共 50 条
  • [21] Restraining the Backward Motion of a Piezoelectric Stick-Slip Actuator With a Passive Damping Foot
    Tian, Xinqi
    Chen, Weishan
    Zhang, Binrui
    Liu, Yingxiang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (10) : 10396 - 10406
  • [22] Design and Experimental Research of a Novel Stick-Slip Type Piezoelectric Actuator
    Zhou, Mingxing
    Fan, Zunqiang
    Ma, Zhichao
    Zhao, Hongwei
    Guo, Yue
    Hong, Kun
    Li, Yuanshang
    Liu, Hang
    Wu, Di
    MICROMACHINES, 2017, 8 (05):
  • [23] Achieving smooth motion of stick-slip piezoelectric actuator by means of alternate stepping
    Ding, Zhaochen
    Dong, Jingshi
    Zhou, Xiaoqin
    Xu, Zhi
    Qiu, Wen
    Shen, Chuanliang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 181
  • [24] Achieving Smooth Motion for Piezoelectric Stick-Slip Actuator With the Inertial Block Structure
    Qiao, Guangda
    Ning, Peng
    Xia, Xiao
    Yu, Yang
    Lu, Xiaohui
    Cheng, Tinghai
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (04) : 3948 - 3958
  • [25] A Novel Trapezoid-Type Stick-Slip Piezoelectric Linear Actuator Using Right Circular Flexure Hinge Mechanism
    Cheng, Tinghai
    He, Meng
    Li, Hengyu
    Lu, Xiaohui
    Zhao, Hongwei
    Gao, Haibo
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (07) : 5545 - 5552
  • [26] A Linear Piezoelectric Stick-Slip Actuator via Triangular Displacement Amplification Mechanism
    Lu, Xiaohui
    Gao, Qiang
    Li, Yikang
    Yu, Yang
    Zhang, Xiaosong
    Qiao, Guangda
    Cheng, Tinghai
    IEEE ACCESS, 2020, 8 : 6515 - 6522
  • [27] An Inchworm and Stick-Slip Dual Mode Piezoelectric Linear Actuator for Cell Injection
    Ma, Jijie
    Li, Junhao
    Lin, Xiaohui
    He, Xinsheng
    Hu, Yili
    Li, Jianping
    Wen, Jianming
    IEEE ACCESS, 2023, 11 : 70534 - 70541
  • [28] A piezoelectric stick-slip linear actuator with a rhombus-type flexure hinge mechanism by means of parasitic motion
    Gao, Qi
    Li, Yikang
    Lu, Xiaohui
    Zhang, Chi
    Zhang, Xiaosong
    Cheng, Tinghai
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (09):
  • [29] A stick-slip piezoelectric actuator with suppressed backward motion achieved using an active locking mechanism (ALM)
    Dong, Jingshi
    Zhang, Bowen
    Li, Xiaotao
    Xu, Zhi
    Wang, Jiru
    Liu, Chang
    Cao, Yi
    SMART MATERIALS AND STRUCTURES, 2021, 30 (09)
  • [30] A novel stick-slip piezoelectric actuator based on two-stage flexible hinge structure
    Li, Zheng
    Zhao, Liang
    Yu, Xuze
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (05):