No-Reference Quality Assessment for Stereoscopic Images Based on Binocular Quality Perception

被引:97
|
作者
Ryu, Seungchul [1 ]
Sohn, Kwanghoon [1 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120749, South Korea
关键词
Binocular quality perception model; no-reference; objective quality metric; stereoscopic image; SUBJECTIVE EVALUATION; VISUAL COMFORT; DEPTH; COMPRESSION; VIDEO; COMBINATION;
D O I
10.1109/TCSVT.2013.2279971
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quality perception of 3-D images is one of the most important parameters for accelerating advances in 3-D imaging fields. Despite active research in recent years for understanding the quality perception of 3-D images, binocular quality perception of asymmetric distortions in stereoscopic images is not thoroughly comprehended. In this paper, we explore the relationship between the perceptual quality of stereoscopic images and visual information, and introduce a model for binocular quality perception. Based on this binocular quality perception model, a no-reference quality metric for stereoscopic images is proposed. The proposed metric is a top-down method modeling the binocular quality perception of the human visual system in the context of blurriness and blockiness. Perceptual blurriness and blockiness scores of left and right images were computed using local blurriness, blockiness, and visual saliency information and then combined into an overall quality index using the binocular quality perception model. Experiments for image and video databases show that the proposed metric provides consistent correlations with subjective quality scores. The results also show that the proposed metric provides higher performance than existing full-reference methods even though the proposed method is a no-reference approach.
引用
下载
收藏
页码:591 / 602
页数:12
相关论文
共 50 条
  • [31] Learning Sparse Representation for No-Reference Quality Assessment of Multiply Distorted Stereoscopic Images
    Shao, Feng
    Tian, Weijun
    Lin, Weisi
    Jiang, Gangyi
    Dai, Qionghai
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (08) : 1821 - 1836
  • [32] LEARNING NATURAL STATISTICS OF BINOCULAR CONTRAST FOR NO REFERENCE QUALITY ASSESSMENT OF STEREOSCOPIC IMAGES
    Zhang, Yi
    Chandler, Damon M.
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 186 - 190
  • [33] FULL-REFERENCE QUALITY ASSESSMENT OF STEREOSCOPIC IMAGES BY MODELING BINOCULAR RIVALRY
    Chen, Ming-Jun
    Su, Che-Chun
    Kwon, Do-Kyoung
    Cormack, Lawrence K.
    Bovik, Alan C.
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 721 - 725
  • [34] A NO-REFERENCE STEREOSCOPIC QUALITY METRIC
    Silva, Alessandro R.
    Melgar, Max E. Vizcarra
    Farias, Mylene C. Q.
    THREE-DIMENSIONAL IMAGE PROCESSING, MEASUREMENT (3DIPM), AND APPLICATIONS 2015, 2015, 9393
  • [35] No-Reference Quality Assessment of Enhanced Images
    Li, Leida
    Shen, Wei
    Gu, Ke
    Wu, Jinjian
    Chen, Beijing
    Zhang, Jianying
    CHINA COMMUNICATIONS, 2016, 13 (09) : 121 - 130
  • [36] No-reference quality assessment of deblocked images
    Li, Leida
    Zhou, Yu
    Lin, Weisi
    Wu, Jinjian
    Zhang, Xinfeng
    Chen, Beijing
    NEUROCOMPUTING, 2016, 177 : 572 - 584
  • [37] Binocular Visual Mechanism Guided No-Reference Stereoscopic Image Quality Assessment Considering Spatial Saliency
    Feng, Jinhui
    Li, Sumei
    Chang, Yongli
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
  • [38] No-reference quality assessment for underwater images
    Hou, Guojia
    Zhang, Siqi
    Lu, Ting
    Li, Yuxuan
    Pan, Zhenkuan
    Huang, Baoxiang
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118
  • [39] No-Reference Quality Assessment of Enhanced Images
    Leida Li
    Wei Shen
    Ke Gu
    Jinjian Wu
    Beijing Chen
    Jianying Zhang
    China Communications, 2016, 13 (09) : 121 - 130
  • [40] No-reference Stereoscopic Image Quality Assessment Based on Visual Saliency Region
    Wang, Xin
    Sheng, Yuxia
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2070 - 2074