Synchronization of memristor-based recurrent neural networks with two delay components based on second-order reciprocally convex approach

被引:105
|
作者
Chandrasekar, A. [1 ]
Rakkiyappan, R. [1 ]
Cao, Jinde [2 ,3 ]
Lakshmanan, S. [4 ]
机构
[1] Bharathiar Univ, Dept Math, Coimbatore 641046, Tamil Nadu, India
[2] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[4] UAE Univ, Coll Sci, Dept Math, Al Ain 15551, U Arab Emirates
基金
中国国家自然科学基金;
关键词
Synchronization; Memristor; Time-varying delays; Reciprocally convex approach; Lyapunov-Krasovskii functional; EXPONENTIAL SYNCHRONIZATION; STABILITY ANALYSIS; ARRAY; SYSTEMS;
D O I
10.1016/j.neunet.2014.06.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We extend the notion of Synchronization of memristor-based recurrent neural networks with two delay components based on second-order reciprocally convex approach. Some sufficient conditions are obtained to guarantee the synchronization of the memristor-based recurrent neural networks via delay-dependent output feedback controller in terms of linear matrix inequalities (LMIs). The activation functions are assumed to be of further common descriptions, which take a broad view and recover many of those existing methods. A Lyapunov-Krasovskii functional (LKF) with triple-integral terms is addressed in this paper to condense conservatism in the synchronization of systems with additive time-varying delays. Jensen's inequality is applied in partitioning the double integral terms in the derivation of LMIs and then a new kind of linear combination of positive functions weighted by the inverses of squared convex parameters has emerged. Meanwhile, this paper puts forward a well-organized method to manipulate such a combination by extending the lower bound lemma. The obtained conditions not only have less conservatism but also less decision variables than existing results. Finally, numerical results and its simulations are given to show the effectiveness of the proposed memristor-based synchronization control scheme. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:79 / 93
页数:15
相关论文
共 50 条
  • [41] Finite-time synchronization of memristor-based neural networks
    Bao, Haibo
    Park, Ju H.
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1732 - 1735
  • [42] Adaptive synchronization of memristor-based neural networks with discontinuous activations
    Li, Yueheng
    Luo, Biao
    Liu, Derong
    Yang, Zhanyu
    Zhu, Yunli
    NEUROCOMPUTING, 2020, 381 : 196 - 206
  • [43] Drive-Response Synchronization for Second-Order Memristor-Based Delayed Neural Networks with Settling Time Estimation via Discontinuous Feedback Control
    Zhang, Tiecheng
    Huang, Dasong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2023, 2023
  • [44] Hyperchaos in a second-order discrete memristor-based map model
    Bao, Bo-Cheng
    Li, Houzhen
    Wu, Huagan
    Zhang, Xi
    Chen, Mo
    ELECTRONICS LETTERS, 2020, 56 (15) : 769 - 770
  • [45] Mixed H∞ and PassiveProjective Synchronization for Fractional Order Memristor-Based Neural Networks with Time-Delay and Parameter Uncertainty
    Song, Xiao-Na
    Song, Shuai
    Tejado Balsera, Ines
    Liu, Lei-Po
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 68 (04) : 483 - 494
  • [46] Impulsive controller design for exponential synchronization of delayed stochastic memristor-based recurrent neural networks
    Chandrasekar, A.
    Rakkiyappan, R.
    NEUROCOMPUTING, 2016, 173 : 1348 - 1355
  • [47] Global Stabilization of Fractional-Order Memristor-Based Neural Networks With Time Delay
    Jia, Jia
    Huang, Xia
    Li, Yuxia
    Cao, Jinde
    Alsaedi, Ahmed
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (03) : 997 - 1009
  • [48] Dynamical analysis of memristor-based fractional-order neural networks with time delay
    Cui, Xueli
    Yu, Yongguang
    Wang, Hu
    Hu, Wei
    MODERN PHYSICS LETTERS B, 2016, 30 (18):
  • [49] Synchronization of Memristor-Based Coupling Recurrent Neural Networks With Time-Varying Delays and Impulses
    Zhang, Wei
    Li, Chuandong
    Huang, Tingwen
    He, Xing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (12) : 3308 - 3313
  • [50] Exponential synchronization of memristor-based neural networks with time-varying delay and stochastic perturbation
    Wang, Xin
    She, Kun
    Zhong, Shouming
    Cheng, Jun
    NEUROCOMPUTING, 2017, 242 : 131 - 139