A note on Vizing's independence number conjecture of edge chromatic critical graphs

被引:14
|
作者
Luo, Rong [1 ]
Zhao, Yue
机构
[1] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37130 USA
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
independence number; critical graph; edge coloring; class one; class two;
D O I
10.1016/j.disc.2006.03.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1968, Vizing conjectured that, if G is a Delta-critical graph with n vertices, then alpha(G) <= n/2, where alpha(G) is the independence number of G. In this note, we verify this conjecture for n <= 2 Delta. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1788 / 1790
页数:3
相关论文
共 50 条
  • [21] A note on Hadwiger's conjecture for W5-free graphs with independence number two
    Bosse, Christian
    DISCRETE MATHEMATICS, 2019, 342 (12)
  • [22] Reducing Vizing’s 2-Factor Conjecture to Meredith Extension of Critical Graphs
    Xiaodong Chen
    Qing Ji
    Mingda Liu
    Graphs and Combinatorics, 2020, 36 : 1585 - 1591
  • [23] A note on graphs contraction-critical with respect to independence number
    Plummer, Michael D.
    Saito, Akira
    DISCRETE MATHEMATICS, 2014, 325 : 85 - 91
  • [24] A note on the size of edge-chromatic 4-critical graphs
    Cheng, Jian
    Lorenzen, Kate J.
    Luo, Rong
    Thompson, Joshua C.
    DISCRETE MATHEMATICS, 2016, 339 (10) : 2393 - 2398
  • [25] Random lifts of graphs: Independence and chromatic number
    Amit, A
    Linial, N
    Matousek, J
    RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (01) : 1 - 22
  • [26] Independence, irredundance, degrees and chromatic number in graphs
    Bacsó, G
    Favaron, O
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 257 - 262
  • [27] On the Chromatic Edge Stability Number of Graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Movarraei, Nazanin
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1539 - 1551
  • [28] On the Chromatic Edge Stability Number of Graphs
    Arnfried Kemnitz
    Massimiliano Marangio
    Nazanin Movarraei
    Graphs and Combinatorics, 2018, 34 : 1539 - 1551
  • [29] A Note on Star Chromatic Number of Graphs
    Hong Yong FUDe Zheng XIE College of Mathematics and StatisticsChongqing UniversityChongqing PRChinaCollege of Economics and Business AdministrationChongqing UniversityChongqing PRChina
    数学研究与评论, 2010, 30 (05) : 841 - 844
  • [30] REGULAR GRAPHS AND EDGE CHROMATIC NUMBER
    FAUDREE, RJ
    SHEEHAN, J
    DISCRETE MATHEMATICS, 1984, 48 (2-3) : 197 - 204