Semiclassical expansion of Wigner functions

被引:14
|
作者
Pulvirenti, M. [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
D O I
10.1063/1.2200143
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the time evolved Wigner function of a quantum particle under the action of a smooth potential can be formally expanded in powers of h, where each term of the expansion can be computed in terms of the corresponding classical flow. Moreover the solution can be approximated by the N-order truncation with an error O(h(N+1)). (c) 2006 American Institute of Physics.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Semiclassical mechanics of the Wigner 6j-symbol
    Aquilanti, Vincenzo
    Haggard, Hal M.
    Hedeman, Austin
    Jeevanjee, Nadir
    Littlejohn, Robert G.
    Yu, Liang
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (06)
  • [32] Semiclassical analysis of Wigner 3j-symbol
    Aquilanti, Vincenzo
    Haggard, Hal M.
    Littlejohn, Robert G.
    Yu, Liang
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (21) : 5637 - 5674
  • [33] WIGNER PHASE SPACE METHOD - ANALYSIS FOR SEMICLASSICAL APPLICATIONS
    HELLER, EJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1976, 65 (04): : 1289 - 1298
  • [34] Wigner functions on a lattice
    Takami, A
    Hashimoto, T
    Horibe, M
    Hayashi, A
    [J]. PHYSICAL REVIEW A, 2001, 64 (03): : 6
  • [35] Physical Wigner functions
    Benavides-Riveros, Carlos L.
    Gracia-Bondia, Jose M.
    [J]. PHYSICAL REVIEW A, 2013, 87 (02):
  • [36] OSCILLATOR WIGNER FUNCTIONS
    POGOSYAN, GS
    SMORODINSKY, YA
    TERANTONYAN, VM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (04): : 769 - 776
  • [37] Entropy and Wigner functions
    Manfredi, G
    Feix, MR
    [J]. PHYSICAL REVIEW E, 2000, 62 (04): : 4665 - 4674
  • [38] Relativistic Wigner functions
    Bialynicki-Birula, Iwo
    [J]. WIGNER 111 - COLOURFUL & DEEP SCIENTIFIC SYMPOSIUM, 2014, 78
  • [39] Wigner functions with boundaries
    Dias, NC
    Prata, JN
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (10) : 4602 - 4627
  • [40] Diffraction of Wigner functions
    Creagh, Stephen C.
    Sieber, Martin
    Gradoni, Gabriele
    Tanner, Gregor
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (01)