A finite element model for ultrasonic cutting of toffee

被引:6
|
作者
McCulloch, E. [1 ]
MacBeath, A. [1 ]
Lucas, M. [1 ]
机构
[1] Univ Glasgow, Dept Mech Engn, Glasgow G12 8QQ, Lanark, Scotland
关键词
ultrasonics; ultrasonic cutting; finite element analysis; food; toffee;
D O I
10.4028/www.scientific.net/AMM.5-6.519
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The performance of an ultrasonic cutting device critically relies on the interaction of the cutting tool and the material to be cut. A finite element (FE) model of ultrasonic cutting is developed to enable the design of the cutting blade to be influenced by the requirements of the tool-material interaction and to allow cutting parameters to be estimated as an integral part of designing the cutting blade. In this paper, an application in food processing is considered and FE models of cutting are demonstrated for toffee; a food product which is typically sticky, highly temperature dependent, and difficult to cut. Two different 2D coupled thermal stress FE models are considered, to simulate ultrasonic cutting. The first model utilises the debond option in ABAQUS standard and the second uses the element erosion model in ABAQUS explicit. Both models represent a single blade ultrasonic cutting device tuned to a longitudinal mode of vibration cutting a specimen of toffee. The model allows blade tip geometry, ultrasonic amplitude, cutting speed, frequency and cutting force to be adjusted, in particular to assess the effects of different cutting blade profiles. The validity of the model is highly dependent on the accuracy of the material data input and on the accuracy of the friction and temperature boundary condition at the blade-material interface. Uniaxial tensile tests are conducted on specimens of toffee for a range of temperatures. This provides temperature dependent stress-strain data, which characterises the material behaviour, to be included in the FE models. Due to the difficulty in gripping the tensile specimens in the test machine, special grips were manufactured to allow the material to be pulled without initiating cracks or causing the specimen to break at the grips. A Coulomb friction condition at the blade-material interface is estimated from experiments, which study the change in the friction coefficient due to ultrasonic excitation of a surface, made from the same material as the blade, in contact with a specimen of toffee. A model of heat generation at the blade-toffee interface is also included to characterise contact during ultrasonic cutting. The failure criterion for the debond model assumes crack. propagation will occur when the stress normal to the crack surface reaches the tensile failure stress of toffee and the element erosion model uses a shear failure criterion to initiate element removal. The validity of the models is discussed, providing some insights into the estimation of contact conditions and it is shown how these models can improve design of ultrasonic cutting devices.
引用
收藏
页码:519 / +
页数:2
相关论文
共 50 条
  • [41] FINITE-ELEMENT SIMULATION OF OBLIQUE CUTTING
    MAEKAWA, K
    NAGAYAMA, T
    OHSHIMA, I
    MURATA, R
    BULLETIN OF THE JAPAN SOCIETY OF PRECISION ENGINEERING, 1990, 24 (03): : 221 - 222
  • [42] Finite element modeling of orthogonal metal cutting
    Komvopoulos, K.
    Erpenbeck, S.A.
    Journal of engineering for industry, 1991, 113 (03): : 253 - 267
  • [43] Finite Element Analysis on the Cutting Deformation in Drilling
    Han, R. D.
    Wu, J.
    ADVANCES IN MATERIALS MANUFACTURING SCIENCE AND TECHNOLOGY XIII, VOL 1: ADVANCED MANUFACTURING TECHNOLOGY AND EQUIPMENT, AND MANUFACTURING SYSTEMS AND AUTOMATION, 2009, 626-627 : 583 - 588
  • [44] Finite element simulation and analysis of saw cutting
    Chen, Dyi-Cheng
    Chen, You-Hua
    You, Ci-Syong
    Huang, Shin-Han
    2018 3RD INTERNATIONAL CONFERENCE ON PRECISION MACHINERY AND MANUFACTURING TECHNOLOGY (ICPMMT 2018), 2018, 185
  • [45] Finite Element Simulation of Heavy Cutting Process
    Yue, C. X.
    Liu, X. L.
    Zhao, Z. Y.
    Li, K. Q.
    Ma, T. Y.
    HIGH SPEED MACHINING, 2011, 188 : 617 - 621
  • [46] The finite element analysis approach in metal cutting
    Technical University Cluj Napoca, North University, Center Baia Mare, Dr. V. Babeş 62/A, Baia Mare
    430083, Romania
    Acad. J. Manuf. Eng., 1 (12-17):
  • [47] A finite element analysis of orthogonal rubber cutting
    Yan, Jun
    Strenkowski, John S.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2006, 174 (1-3) : 102 - 108
  • [48] Finite element simulation of orthogonal metal cutting
    Carrino, L
    Giuliano, G
    Napolitano, G
    COMPUTATIONAL METHODS IN CONTACT MECHANICS VI, 2003, 8 : 105 - 114
  • [49] Finite element simulation of orthogonal metal cutting
    Shih, A.J.
    Journal of engineering for industry, 1995, 117 (01): : 84 - 93
  • [50] Finite Element Analysis in Ultrasonic Elliptical Vibration Cutting (UEVC) During Micro-Grooving in AISI 1045
    Rendi Kurniawan
    S. Thirumalai Kumaran
    Tae Jo Ko
    International Journal of Precision Engineering and Manufacturing, 2021, 22 : 1497 - 1515