A Sieve model for extreme values

被引:0
|
作者
Coia, Vincenzo [1 ]
Huang, Mei Ling [2 ]
机构
[1] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1W5, Canada
[2] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
power law; extreme value theory; hurricanes; truncated Pareto distribution; Pareto distribution; Black Sea bass; Sieve class of distributions; conservation biology; heavy-tailed distributions;
D O I
10.1080/00949655.2012.761218
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
From the class of extreme value distributions, we focus on the set of heavy-tailed distributions which produce low-frequency, high-cost events. The regular Pareto distribution is the basic model of choice, being the simplest heavy-tailed distribution. Real data suggest that modifications of the Pareto distribution may be a better fit; an alternative model is the truncated Pareto distribution (TPD). For further study, this paper proposed a TPD Sieve class of distributions. The properties and estimation on the Sieve class are also discussed. We fit the models to the largest Black Sea bass caught in Buzzard's Bay, MA, USA and the costliest Atlantic hurricanes from 1900 to 2005. Using measures of model adequacy, the TPD Sieve model is generally found to be the best-fitting model.
引用
收藏
页码:1692 / 1710
页数:19
相关论文
共 50 条
  • [41] ON A TEST FOR HOMOGENEITY AND EXTREME VALUES
    DARLING, DA
    ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (03): : 450 - 456
  • [42] A numerical characteristic of extreme values
    Shimura, Takaaki
    STATISTICS AND ITS INTERFACE, 2014, 7 (03) : 375 - 379
  • [43] Extreme values of permutation statistics
    Dorr, Philip
    Kahle, Thomas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (03):
  • [44] EXTREME VALUES IN STATIONARY SEQUENCES
    LEADBETTER, MR
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 28 (04): : 289 - 303
  • [45] Inference for clusters of extreme values
    Ferro, CAT
    Segers, J
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 545 - 556
  • [46] Functional Extreme Values Range
    Bilchenko, Grigory
    Bilchenko, Natalya
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE STABILITY AND OSCILLATIONS OF NONLINEAR CONTROL SYSTEMS (PYATNITSKIY'S CONFERENCE), 2016,
  • [47] Forecasting financial volatilities with extreme values: The Conditional Autoregressive Range (CARR) Model
    Chou, RY
    JOURNAL OF MONEY CREDIT AND BANKING, 2005, 37 (03) : 561 - 582
  • [48] A Statistical Model for Delay Domain Radio Channel Parameter Affected with Extreme Values
    El-Sallabi, Hassan
    Abdallah, Mohamed
    Chamberland, Jean-Francois
    Qaraqe, Khalid
    2014 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), 2014, : 165 - 166
  • [49] Nonlinear autoregressive sieve bootstrap based on extreme learning machines
    La Rocca, Michele
    Perna, Cira
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (01) : 636 - 653
  • [50] Nonlinear preferences in group decision-making. Extreme values amplifications and extreme values reductions
    Garcia-Zamora, Diego
    Labella, Alvaro
    Rodriguez, Rosa M.
    Martinez, Luis
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (11) : 6581 - 6612