Fast ion conduction in the Li-analogues of Nasicon, Li1+x [(Ta1-x Gex)Al](PO4)3

被引:27
|
作者
Leo, CJ [1 ]
Rao, GVS [1 ]
Chowdari, BVR [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 119260, Singapore
关键词
D O I
10.1039/b110863h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fast lithium ion conducting Nasicon compounds, Li1+x[(Ta1-xGex)Al](PO4)(3), x=0-1.0 have been synthesized, characterized by X-ray diffraction and X-ray photoelectron spectroscopy (XPS) and their ionic conductivities were determined as a function of temperature (T) and frequency (f) by the impedance technique. The hexagonal lattice parameters and cell volume showed a systematic change with the germanium dopant, x. The XPS Li(1s) spectra show two peaks with binding energies (BEs) of 55.0 and 55.9 eV for all the Ge-doped compounds, due to lithium ion occupation in the Type I and II lattice sites. The measured sigma(ionic) at 60degreesC varies from 2.1-5.5 x 10(-5) S cm(-1) for x in the range 0.4-0.8 and E-a and log sigma(o) go through a broad minimum and maximum respectively. From an analysis of sigma(ionic) vs. f at various T, the f-independent sigma(ionic(dc)), the hopping frequency (f(p)) of the mobile lithium ions and the exponent n of the ac dispersive regime were determined. The values of the activation energies of the ac and dc conductivity and that of the hopping process were found to be the same, implying that the mobile ion concentration is T-independent. Also, the low-frequency dispersion due to the electrode polarization appears to correlate with that of the f-independent dc conductivity.
引用
收藏
页码:1848 / 1853
页数:6
相关论文
共 50 条
  • [41] Formation and mobility of defects in the NASICON-type compounds Li1-xZr2-xNbx(PO4)3 and Li1+xZr2-xScx(PO4)3
    Stenina, IA
    Antipov, EV
    Rebrov, AI
    Shpanchenko, RV
    Yaroslavtsev, AB
    DOKLADY CHEMISTRY, 2002, 382 (4-6) : 46 - 49
  • [42] A new NASICON lithium ion-conducting glass-ceramic of the Li1+xCrx(GeyTi1 - y)2 - x(PO4)3 system
    Nuernberg, Rafael Bianchini
    Martins Rodrigues, Ana Candida
    SOLID STATE IONICS, 2017, 301 : 1 - 9
  • [43] High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5)
    Arbi, K.
    Bucheli, W.
    Jimenez, R.
    Sanz, J.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) : 1477 - 1484
  • [44] The NASICON solid solution Li1-x La x /3Zr2(PO4)3: optimization of the sintering process and ionic conductivity measurements
    Barre, M.
    Le Berre, F.
    Crosnier-Lopez, M-P.
    Galven, C.
    Bohnke, O.
    Fourquet, J-L.
    IONICS, 2009, 15 (06) : 681 - 687
  • [45] NASICON结构Li1+xAlxTi2-x(PO4)3(0≤x≤0.5)固体电解质研究进展
    吴洁
    江小标
    杨旸
    吴勇民
    朱蕾
    汤卫平
    储能科学与技术, 2020, 9 (05) : 1472 - 1488
  • [46] Atomistic analysis of Li migration in Li1+xAlxTi2-x(PO4)3 (LATP) solid electrolytes
    Pfalzgraf, Daniel
    Mutter, Daniel
    Urban, Daniel F.
    SOLID STATE IONICS, 2021, 359
  • [47] LI+ -ION CONDUCTIVITY OF LI1+XMXTI2-X(PO4)3 (M-SC(3+),Y(3+))
    ADO, K
    SAITO, Y
    ASAI, T
    KAGEYAMA, H
    NAKAMURA, O
    SOLID STATE IONICS, 1992, 53 : 723 - 727
  • [48] "Hydrotriphylites" Li1-xFe1+x(PO4)1-y(OH)4y as Cathode Materials for Li-ion Batteries
    Sumanov, Vasily D.
    Aksyonov, Dmitry A.
    Drozhzhin, Oleg A.
    Presniakov, Igor
    Sobolev, Alexey V.
    Glazkova, Iana
    Tsirlin, Alexander A.
    Rupasov, Dmitry
    Senyshyn, Anatoliy
    Kolesnik, Irina V.
    Stevenson, Keith J.
    Antipov, Evgeny
    Abakumov, Artem M.
    CHEMISTRY OF MATERIALS, 2019, 31 (14) : 5035 - 5046
  • [49] Towards elucidating microscopic structural changes in Li-ion conductors Li1+yTi2-yAly[PO4]3 and Li1+yTi2-yAly[PO4]3-x[MO4]x (M = V and Nb):: X-ray and 27Al and 31P NMR studies
    Wong, S
    Newman, PJ
    Best, AS
    Nairn, KM
    MacFarlane, DR
    Forsyth, M
    JOURNAL OF MATERIALS CHEMISTRY, 1998, 8 (10) : 2199 - 2203
  • [50] Study of the glass-to-crystal transformation of the NASICON-type solid electrolyte Li1+xAlxGe2 - x(PO4)3
    Liu, Zhongqing
    Venkatachalam, Sabarinathan
    Kirchhain, Holger
    van Wuellen, Leo
    SOLID STATE IONICS, 2016, 295 : 32 - 40