Stress Prediction of the Particle Structure of All-Solid-State Batteries by Numerical Simulation and Machine Learning

被引:2
|
作者
Komori, Chiyuri [1 ]
Ishikawa, Shota [1 ]
Nunoshita, Keita [1 ]
So, Magnus [1 ]
Kimura, Naoki [1 ]
Inoue, Gen [1 ]
Tsuge, Yoshifumi [1 ]
机构
[1] Kyushu Univ, Dept Chem Engn, Fukuoka, Japan
来源
关键词
all-solid-state batteries; simulation; discrete element method; machine learning; convolutional neural network; stress distribution; reaction area; MECHANICS;
D O I
10.3389/fceng.2022.836282
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
All-Solid-state batteries (ASSBs) are non-flammable and safe and have high capacities. Thus, ASSBs are expected to be commercialized soon for use in electric vehicles. However, because the electrode active material (AM) and solid electrolyte (SE) of ASSBs are both solid particles, the contact between the particles strongly affects the battery characteristics, yet the correlation between the electrode structure and the stress at the contact surface between the solids remains unknown. Therefore, we used the results of numerical simulations as a dataset to build a machine learning model to predict the battery performance of ASSBs. Specifically, the discrete element method (DEM) was used for the numerical simulations. In these simulations, AM and SE particles were used to fill a model of the electrode, and force was applied from one direction. Thus, the stress between the particles was calculated with respect to time. Using the simulations, we obtained a sufficient data set to build a machine learning model to predict the distribution of interparticle stress, which is difficult to measure experimentally. Promisingly, the stress distribution predicted by the constructed machine learning model showed good agreement with the stress distribution calculated by DEM.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Studies of lithium argyrodite solid electrolytes for all-solid-state batteries
    Rao, R. P.
    Adams, S.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08): : 1804 - 1807
  • [42] A review on 1D materials for all-solid-state lithium-ion batteries and all-solid-state lithium-sulfur batteries
    Yang, Qi
    Deng, Nanping
    Zhao, Yixia
    Gao, Lu
    Cheng, Bowen
    Kang, Weimin
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [43] Densification and stress distribution within the sintered structure of ceramic electrolytes for all-solid-state Li-ion batteries
    Ni, Kuo-Hsuan
    Chen, Zhe-Long
    Li, Chia-Chen
    ACTA MATERIALIA, 2024, 275
  • [44] Challenges and Prospects of All-Solid-State Electrodes for Solid-State Lithium Batteries
    Dong, Shaowen
    Sheng, Li
    Wang, Li
    Liang, Jie
    Zhang, Hao
    Chen, Zonghai
    Xu, Hong
    He, Xiangming
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (49)
  • [45] Chalcogenide Electrolytes for All-Solid-State Sodium Ion Batteries
    Chen, Guanghai
    Bai, Ying
    Gao, Yongsheng
    Wu, Feng
    Wu, Chuan
    ACTA PHYSICO-CHIMICA SINICA, 2020, 36 (05)
  • [46] Advanced Characterization Techniques for Interface in All-Solid-State Batteries
    Li, Yuyu
    Gao, Zhonghui
    Hu, Fei
    Lin, Xing
    Wei, Ying
    Peng, Jian
    Yang, Jiayi
    Li, Zhen
    Huang, Yunhui
    Ding, Han
    SMALL METHODS, 2020, 4 (09):
  • [47] Metal Halide Superionic Conductors for All-Solid-State Batteries
    Liang, Jianwen
    Li, Xiaona
    Adair, Keegan R.
    Sun, Xueliang
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (04) : 1023 - 1033
  • [48] Chemical Competing Diffusion for Practical All-Solid-State Batteries
    Dai, Zhongsheng
    Sun, Xuan
    Chen, Renjie
    Wu, Feng
    Li, Li
    Journal of the American Chemical Society, 2024, 146 (50) : 34517 - 34527
  • [49] Mechanical properties of sulfide glasses in all-solid-state batteries
    Kato, Atsutaka
    Nose, Masashi
    Yamamoto, Mirai
    Sakuda, Atsushi
    Hayashi, Akitoshi
    Tatsumisago, Masahiro
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2018, 126 (09) : 719 - 727
  • [50] Transport and mechanical aspects of all-solid-state lithium batteries
    Deysher, Grayson
    Ridley, Phillip
    Ham, So-Yeon
    Doux, Jean-Marie
    Chen, Yu-Ting
    Wu, Erik A.
    Tan, Darren H. S.
    Cronk, Ashley
    Jang, Jihyun
    Meng, Ying Shirley
    MATERIALS TODAY PHYSICS, 2022, 24