Improving GAN-based Domain Adaptation for Object Detection

被引:4
|
作者
Menke, Maximilian [1 ]
Wenzel, Thomas [1 ]
Schwung, Andreas [2 ]
机构
[1] Robert Bosch Car Multimedia GmbH, Hildesheim, Germany
[2] Univ Appl Sci, Soest, Germany
关键词
PIXEL;
D O I
10.1109/ITSC55140.2022.9922138
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unlabeled or insufficiently labeled data is a common challenge in autonomous driving applications. Perception tasks like object detection in particular require annotated data, which is expensive to acquire, due to mostly manual labeling processes. One approach to saving label cost is using synthetic data and unsupervised domain adaptation to bridge the visual appearance gap towards the real application data. Knowing the placement of objects in rendered scenes, labels can be extracted automatically. However, lack of realism in rendered scenes leaves a domain gap between real and synthetic data. We transfer image-to-image adversarial domain adaptation methods from semantic segmentation to object detection, leveraging synthetic data for the task of vehicle detection in real images. This improved GAN-based image generation is combined with a standard object detector. This is in contrast to previous works, which also applied domain adaptation methods to the detector. With our adaptations we achieve state of the art results in domain adaption using generative adversarial networks on GTA to Cityscapes synthetic to real unsupervised domain transfer for vehicle detection.
引用
收藏
页码:3880 / 3885
页数:6
相关论文
共 50 条
  • [11] Progressive Domain Adaptation for Object Detection
    Hsu, Han-Kai
    Yao, Chun-Han
    Tsai, Yi-Hsuan
    Hung, Wei-Chih
    Tseng, Hung-Yu
    Singh, Maneesh
    Yang, Ming-Hsuan
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 738 - 746
  • [12] GAN-based anomaly detection: A review
    Xia, Xuan
    Pan, Xizhou
    Li, Nan
    He, Xing
    Ma, Lin
    NEUROCOMPUTING, 2022, 493 : 497 - 535
  • [13] GAN-based Hyperspectral Anomaly Detection
    Arisoy, Sertac
    Nasrabadi, Nasser M.
    Kayabol, Koray
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1891 - 1895
  • [14] GAN-BASED OUT-OF-DOMAIN DETECTION USING BOTH IN-DOMAIN AND OUT-OF-DOMAIN SAMPLES
    Liang, Chaojie
    Huang, Peijie
    Lai, Wenbin
    Ruan, Ziheng
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 7663 - 7667
  • [15] Object detection based on semi-supervised domain adaptation for imbalanced domain resources
    Wei Li
    Meng Wang
    Hongbin Wang
    Yafei Zhang
    Machine Vision and Applications, 2020, 31
  • [16] Object detection based on semi-supervised domain adaptation for imbalanced domain resources
    Li, Wei
    Wang, Meng
    Wang, Hongbin
    Zhang, Yafei
    MACHINE VISION AND APPLICATIONS, 2020, 31 (03)
  • [17] Review of Cross-Domain Object Detection Algorithms Based on Depth Domain Adaptation
    Liu, Hualing
    Pi, Changpeng
    Zhao, Chenyu
    Qiao, Liang
    Computer Engineering and Applications, 2023, (08) : 1 - 12
  • [18] Incremental learning based multi-domain adaptation for object detection
    Wei, Xing
    Liu, Shaofan
    Xiang, Yaoci
    Duan, Zhangling
    Zhao, Chong
    Lu, Yang
    KNOWLEDGE-BASED SYSTEMS, 2020, 210 (210)
  • [19] FedDAD: Federated Domain Adaptation for Object Detection
    Lu, Peggy Joy
    Jui, Chia-Yung
    Chuang, Jen-Hui
    IEEE ACCESS, 2023, 11 : 51320 - 51330
  • [20] DOMAIN ADAPTATION METHOD FOR DOCUMENT OBJECT DETECTION
    Xiang Junlin
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,