Fractional Calculus of Quantum Painleve Systems of Type Al(1)

被引:0
|
作者
Nagoya, Hajime [1 ]
机构
[1] Rikkyo Univ, Dept Math, Tokyo 1718501, Japan
关键词
Affine Weyl groups; Painleve equations; Integral representation; WEYL GROUP SYMMETRIES; EQUATIONS;
D O I
10.1090/conm/651/13045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, considering the Schrodinger equations obtained from the quantum Painleve systems of type A(l)((1)) introduced by the author previously, we realize the affine Weyl group symmetries of type A(l)((1)) on the SchrOdinger equations. As a result, we obtain several integral representations as particular solutions to the Schrodinger equations.
引用
收藏
页码:39 / 64
页数:26
相关论文
共 50 条
  • [21] A Fractional Calculus Application to Biological Reactive Systems
    Rico-Ramirez, Vicente
    Martinez-Lizardo, Jesus
    Iglesias-Silva, Gustavo A.
    Hernandez-Castro, Salvador
    Diwekar, Urmila M.
    22 EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2012, 30 : 1302 - 1306
  • [22] Fractional calculus operators and their applications to thermal systems
    Agarwal, Praveen
    Wang, G.
    Al-Dhaifallah, M.
    ADVANCES IN MECHANICAL ENGINEERING, 2018, 10 (06):
  • [23] Application of Fractional Calculus in the Control of Heat Systems
    Jesus, Isabel S.
    Machado, J. A. Tenreiro
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2007, 11 (09) : 1086 - 1091
  • [24] Discrete fractional calculus for interval–valued systems
    Huang, Lan-Lan
    Wu, Guo-Cheng
    Baleanu, Dumitru
    Wang, Hong-Yong
    Fuzzy Sets and Systems, 2021, 404 : 141 - 158
  • [25] Fractional calculus in the Mellin setting and Hadamard-type fractional integrals
    Butzer, PL
    Kilbas, AA
    Trujillo, JJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (01) : 1 - 27
  • [26] Beta Ensembles, Quantum Painleve Equations and Isomonodromy Systems
    Rumanov, Igor
    ALGEBRAIC AND ANALYTIC ASPECTS OF INTEGRABLE SYSTEMS AND PAINLEVE EQUATIONS, 2015, 651 : 125 - 155
  • [27] Distribution of positive type in quantum calculus
    Nemri, Akram
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2006, 13 (04) : 566 - 583
  • [28] Sobolev type spaces in quantum calculus
    Nemri, Akram
    Selmi, Belgacem
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) : 588 - 601
  • [29] Distribution of positive type in Quantum Calculus
    Akram Nemri
    Journal of Nonlinear Mathematical Physics, 2006, 13 : 566 - 583
  • [30] Calderon type formula in Quantum calculus
    Nemri, Akram
    Selmi, Belgacem
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (03): : 491 - 504