Fractional Calculus of Quantum Painleve Systems of Type Al(1)

被引:0
|
作者
Nagoya, Hajime [1 ]
机构
[1] Rikkyo Univ, Dept Math, Tokyo 1718501, Japan
关键词
Affine Weyl groups; Painleve equations; Integral representation; WEYL GROUP SYMMETRIES; EQUATIONS;
D O I
10.1090/conm/651/13045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, considering the Schrodinger equations obtained from the quantum Painleve systems of type A(l)((1)) introduced by the author previously, we realize the affine Weyl group symmetries of type A(l)((1)) on the SchrOdinger equations. As a result, we obtain several integral representations as particular solutions to the Schrodinger equations.
引用
收藏
页码:39 / 64
页数:26
相关论文
共 50 条
  • [1] Quantum Painleve systems of type Al(1)
    Nagoya, H
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2004, 15 (10) : 1007 - 1031
  • [2] Realizations of Affine Weyl Group Symmetries on the Quantum Painleve, Equations by Fractional Calculus
    Nagoya, Hajime
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 102 (03) : 297 - 321
  • [3] Quantum Painleve systems of type An-1(1) with higher degree lax operators
    Nagoya, Hajime
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2007, 18 (07) : 839 - 868
  • [4] On quantum trigonometric fractional calculus
    Sadek, Lakhlifa
    Algefary, Ali
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 120 : 371 - 377
  • [5] ON REPRESENTATION AND INTERPRETATION OF FRACTIONAL CALCULUS AND FRACTIONAL ORDER SYSTEMS
    Paulo Garcia-Sandoval, Juan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (02) : 522 - 537
  • [6] On representation and interpretation of Fractional calculus and fractional order systems
    Juan Paulo García-Sandoval
    Fractional Calculus and Applied Analysis, 2019, 22 : 522 - 537
  • [7] Painleve type equations and Hitchin systems
    Olshanetsky, MA
    INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 153 - 174
  • [8] Integral inequalities via fractional quantum calculus
    Weerawat Sudsutad
    Sotiris K Ntouyas
    Jessada Tariboon
    Journal of Inequalities and Applications, 2016
  • [9] Integral inequalities via fractional quantum calculus
    Sudsutad, Weerawat
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 15
  • [10] NONLOCAL PHENOMENA IN QUANTUM MECHANICS WITH FRACTIONAL CALCULUS
    Atman, Kazim Gokhan
    Sirin, Huseyin
    REPORTS ON MATHEMATICAL PHYSICS, 2020, 86 (02) : 263 - 270