Knot cobordism and Lee's perturbation of Khovanov homology

被引:0
|
作者
Zhuang, Zipei [1 ]
机构
[1] Sch Math Sci, 220 Handan Rd, Shanghai, Peoples R China
关键词
Khovanov homology; Lee homology; knot cobordism; torsion order;
D O I
10.1142/S0218216522500122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a connected cobordism S between two knots K-0, K-1 in S-3, we establish an inequality involving the number of local maxima, the genus of S, and the torsion orders of Kh(t)(K-0),Kh(t)(K-1), where Kh(t) denotes Lee's perturbation of Khovanov homology. This shows that the torsion order gives a lower bound for the band-unlinking number.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A generalization of Khovanov's homology
    Aouani, Zouhaier
    Saihi, Ines
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (12) : 1135 - 1140
  • [22] Khovanov's homology for tangle and cobordisms
    Bar-Natan, D
    GEOMETRY & TOPOLOGY, 2005, 9 : 1443 - 1499
  • [23] State cycles which represent the canonical class of Lee's homology of a knot
    Abe, Tetsuya
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (04) : 1146 - 1158
  • [24] Equivariant Khovanov-Rozansky homology and Lee-Gornik spectral sequence
    Wu, Hao
    QUANTUM TOPOLOGY, 2015, 6 (04) : 515 - 607
  • [25] Unoriented Khovanov Homology
    Baldridge, Scott
    Kauffman, Louis H.
    McCarty, Ben
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 367 - 401
  • [26] NOT EVEN KHOVANOV HOMOLOGY
    Vaz, Pedro
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 308 (01) : 223 - 256
  • [27] Localization in Khovanov homology
    Stoffregen, Matthew
    Zhang, Melissa
    GEOMETRY & TOPOLOGY, 2024, 28 (04)
  • [28] An Introduction to Khovanov Homology
    Kauffman, Louis H.
    KNOT THEORY AND ITS APPLICATIONS, 2016, 670 : 105 - 139
  • [29] Torsion of Khovanov homology
    Shumakovitch, Alexander N.
    FUNDAMENTA MATHEMATICAE, 2014, 225 : 343 - 364
  • [30] Rotors in Khovanov Homology
    MacColl, Joseph
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (01): : 159 - 169