The Log-Exponential Smoothing Technique and Nesterov's Accelerated Gradient Method for Generalized Sylvester Problems

被引:6
|
作者
Nguyen Thai An [1 ]
Giles, Daniel [2 ]
Nguyen Mau Nam [2 ]
Rector, R. Blake [2 ]
机构
[1] Thua Thien Hue Coll Educ, 123 Nguyen Hue, Hue City, Vietnam
[2] Portland State Univ, Fariborz Maseeh Dept Math & Stat, POB 751, Portland, OR 97207 USA
基金
美国国家科学基金会;
关键词
Log-exponential smoothing technique; Majorization minimization algorithm; Nesterov's accelerated gradient method; Generalized Sylvester problem; SMALLEST ENCLOSING BALL; ALGORITHMS;
D O I
10.1007/s10957-015-0811-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Sylvester or smallest enclosing circle problem involves finding the smallest circle enclosing a finite number of points in the plane. We consider generalized versions of the Sylvester problem in which the points are replaced by sets. Based on the log-exponential smoothing technique and Nesterov's accelerated gradient method, we present an effective numerical algorithm for solving these problems.
引用
收藏
页码:559 / 583
页数:25
相关论文
共 25 条
  • [21] A timestamp-based Nesterov's accelerated projected gradient method for distributed Nash equilibrium seeking in monotone games
    Liu, Nian
    Tan, Shaolin
    Tao, Ye
    Lue, Jinhu
    SYSTEMS & CONTROL LETTERS, 2024, 194
  • [22] Efficient Representation to Dynamic QoS Data via Generalized Nesterov's Accelerated Gradient-incorporated Biased Non-negative Latent Factorization of Tensors
    Chen, Minzhi
    Luo, Xin
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 576 - 581
  • [23] A Generalized Nesterov's Accelerated Gradient-Incorporated Non-Negative Latent-Factorization-of-Tensors Model for Efficient Representation to Dynamic QoS Data
    Chen, Minzhi
    Wang, Renfang
    Qiao, Yan
    Luo, Xin
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (03): : 2386 - 2400
  • [24] A coupled FE-meshfree method for Helmholtz problems using point interpolation shape functions and edge-based gradient smoothing technique
    You, Xiangyu
    Chai, Yingbin
    Li, Wei
    COMPUTERS & STRUCTURES, 2019, 213 : 1 - 22
  • [25] An Adjoint Technique Applied to Slab-Geometry Source-Detector Problems Using the Generalized Spectral Green's Function Nodal Method
    Curbelo, Jesus P.
    da Silva, Odair P.
    Barros, Ricardo C.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2018, 47 (1-3) : 278 - 299