Influence of wave-front sampling in adaptive optics retinal imaging

被引:5
|
作者
Laslandes, Marie [1 ]
Salas, Matthias [1 ]
Hitzenberger, Christoph K. [1 ]
Pircher, Michael [1 ]
机构
[1] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Waehringer Guertel 18-20, A-1090 Vienna, Austria
来源
BIOMEDICAL OPTICS EXPRESS | 2017年 / 8卷 / 02期
基金
奥地利科学基金会;
关键词
SCANNING LASER OPHTHALMOSCOPE; HUMAN EYE; COHERENCE TOMOGRAPHY; IN-VIVO; HIGH-RESOLUTION; SENSOR; ABERRATIONS; SYSTEM; PHOTORECEPTORS; QUALITY;
D O I
10.1364/BOE.8.001083
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A wide range of sampling densities of the wave-front has been used in retinal adaptive optics (AO) instruments, compared to the number of corrector elements. We developed a model in order to characterize the link between number of actuators, number of wave-front sampling points and AO correction performance. Based on available data from aberration measurements in the human eye, 1000 wave-fronts were generated for the simulations. The AO correction performance in the presence of these representative aberrations was simulated for different deformable mirror and Shack Hartmann wave-front sensor combinations. Predictions of the model were experimentally tested through in vivo measurements in 10 eyes including retinal imaging with an AO scanning laser ophthalmoscope. According to our study, a ratio between wavefront sampling points and actuator elements of 2 is sufficient to achieve high resolution in vivo images of photoreceptors. (C) 2017 Optical Society of America
引用
收藏
页码:1083 / 1100
页数:18
相关论文
共 50 条
  • [31] INVESTIGATION OF A CCD WAVE-FRONT SENSOR OF AN ADAPTIVE OPTICS RADIATION FOCUSING SYSTEM
    ARUTYUNOV, VA
    SLOBODYAN, SM
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1985, 28 (01) : 176 - 178
  • [32] METHODS OF ADAPTIVE OPTICS IN THE PROBLEMS OF WAVE-FRONT RECONSTRUCTION USING INTENSITY DISTRIBUTIONS
    VORONTSOV, MA
    KUDRYASHOV, IA
    SHMALGAUZEN, VI
    OPTIKA I SPEKTROSKOPIYA, 1987, 63 (02): : 329 - 333
  • [33] Statistical Performance of Conjugate Gradient Method for Wave-Front Reconstruction in Adaptive Optics
    Sakaematsu, Hiroki
    Saika, Yohei
    2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2012, : 1279 - 1284
  • [34] Interferometric adaptive optics testbed for laser pointing, wave-front control and phasing
    Baker, K. L.
    Homoelle, D.
    Utternback, E.
    Stappaerts, E. A.
    Siders, C. W.
    Barty, C. P. J.
    OPTICS EXPRESS, 2009, 17 (19): : 16696 - 16709
  • [35] Wave-front sensing with a sampling field sensor
    Tumbar, R
    Stack, RA
    Brady, DJ
    APPLIED OPTICS, 2000, 39 (01) : 72 - 84
  • [36] Adaptive-optics correction of a stellar interferometer with a single pyramid wave-front sensor
    Verinaud, C
    Esposito, S
    OPTICS LETTERS, 2002, 27 (07) : 470 - 472
  • [37] Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform
    Poyneer, LA
    Gavel, DT
    Brase, JM
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (10): : 2100 - 2111
  • [38] ADAPTIVE OPTICS FOR ARRAY TELESCOPES USING PISTON-AND-TILT WAVE-FRONT SENSING
    WIZINOWICH, P
    MCLEOD, B
    LLOYDHART, M
    ANGEL, JRP
    COLUCCI, D
    DEKANY, R
    MCCARTHY, D
    WITTMAN, D
    SCOTTFLEMING, I
    APPLIED OPTICS, 1992, 31 (28): : 6036 - 6046
  • [39] Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics
    Nicolle, M
    Fusco, T
    Rousset, G
    Michau, V
    OPTICS LETTERS, 2004, 29 (23) : 2743 - 2745
  • [40] BINARY ADAPTIVE OPTICS - ATMOSPHERIC WAVE-FRONT CORRECTION WITH A HALF-WAVE PHASE-SHIFTER
    LOVE, GD
    ANDREWS, N
    BIRCH, P
    BUSCHER, D
    DOEL, P
    DUNLOP, C
    MAJOR, J
    MYERS, R
    PURVIS, A
    SHARPLES, R
    VICK, A
    ZADROZNY, A
    RESTAINO, SR
    GLINDEMANN, A
    APPLIED OPTICS, 1995, 34 (27): : 6058 - 6066