Quasi ML algorithm for 2-D PPS estimation

被引:12
|
作者
Djurovic, Igor [1 ]
机构
[1] Univ Montenegro, Fac Elect Engn, Podgorica 81000, Montenegro
关键词
2-D signals; Polynomial phase; Short-time Fourier transform; Parameters estimation; POLYNOMIAL-PHASE SIGNALS; ORDER AMBIGUITY FUNCTION; PARAMETER-ESTIMATION; TARGET ACCELERATION;
D O I
10.1007/s11045-015-0344-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The 2-D quasi-maximum likelihood algorithm for estimation of 2-D polynomial phase signals (2-D PPSs) is proposed. Estimation of all phase parameters is performed in an efficient manner using search only over a set of the window widths in the 2-D short-time Fourier transform (STFT). The mean squared error is on the Cramer-Rao lower bound that is big advantage with respect to all existing phase differentiation techniques even for low SNR. The proposed technique consists of two basic stages: rough estimation that is performed using 2-D STFT and fine stage with dechirping, downsampling, filtering, and polynomial interpolation. Obtained results are excellent even for 2-D PPSs of high-order or in the case when modulation is nonpolynomial.
引用
下载
收藏
页码:371 / 387
页数:17
相关论文
共 50 条
  • [21] 2-D DOA estimation Using MUSIC algorithm with Uniform Circular Array
    Amine, Ihedrane Mohammed
    Seddik, Bri
    2016 4TH IEEE INTERNATIONAL COLLOQUIUM ON INFORMATION SCIENCE AND TECHNOLOGY (CIST), 2016, : 850 - 853
  • [22] Constrained LS algorithm for channel vector estimation in 2-D rake receiver
    Wang, JM
    Zhao, CM
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS: SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO AND ELECTROACOUSTICS MULTIMEDIA SIGNAL PROCESSING, 2003, : 125 - 128
  • [23] PARALLEL ALGORITHM FOR MSE ESTIMATION OF 2-D NONCAUSAL IMAGE-MODELS
    THEODORIDIS, S
    KALOUPTSIDIS, N
    MICROPROCESSING AND MICROPROGRAMMING, 1987, 21 (1-5): : 137 - 140
  • [24] Optimal parameter selection in the phase differencing algorithm for 2-D phase estimation
    Francos, JM
    Friedlander, B
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (01) : 273 - 279
  • [25] A MINIMUM FREE-ENERGY HYBRID ALGORITHM FOR 2-D SPECTRAL ESTIMATION
    COOPER, DK
    PIMBLEY, JM
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (03) : 698 - 702
  • [26] 2-D sinusoidal amplitude estimation with application to 2-D system identification
    Li, HB
    Sun, W
    Stoica, P
    Li, J
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 1921 - 1924
  • [27] 2-D QUASI-FRACTURE OF POLYMERS
    HSIAO, CC
    CHERN, SS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (03): : 365 - 365
  • [28] 2-D DOA estimation with no failure
    Tayem, N
    Kwon, HM
    Lee, YH
    VTC2005-FALL: 2005 IEEE 62ND VEHICULAR TECHNOLOGY CONFERENCE, 1-4, PROCEEDINGS, 2005, : 2206 - 2210
  • [29] 2-D TOROIDAL TRANSPORT ALGORITHM
    HELTON, FJ
    MILLER, RL
    RAWLS, JM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1329 - 1329
  • [30] AN ALGORITHM FOR THE COMPUTATION OF 2-D EIGENVALUES
    ZOU, Y
    YANG, CW
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (07) : 1436 - 1439