Symmetric tensor categories in characteristic 2

被引:15
|
作者
Benson, Dave
Etingof, Pavel
机构
基金
美国国家科学基金会;
关键词
Symmetric tensor category; Tilting module; MODULE CATEGORIES; REPRESENTATIONS;
D O I
10.1016/j.aim.2019.05.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct and study a nested sequence of finite symmetric tensor categories Vec = C-0 subset of C-1 subset of center dot center dot center dot C-n subset of center dot center dot center dot over a field of characteristic 2 such that C-2n are incompressible, i.e., do not admit tensor functors into tensor categories of smaller Frobenius-Perron dimension. This generalizes the category C-1 described by Venkatesh [28] and the category C-2 defined by Ostrik. The Grothendieck rings of the categories C-2n and C2n+1 are both isomorphic to the ring of real cyclotomic integers defined by a primitive 2(n+2)-th root of unity, O-n = Z[2 cos(pi/2(n+1))]. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:967 / 999
页数:33
相关论文
共 50 条
  • [31] BRAIDED TENSOR CATEGORIES
    JOYAL, A
    STREET, R
    ADVANCES IN MATHEMATICS, 1993, 102 (01) : 20 - 78
  • [32] FINITE TENSOR CATEGORIES
    Etingof, Pavel
    Ostrik, Viktor
    MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (03) : 627 - 654
  • [33] TORTILE TENSOR CATEGORIES
    SHUM, MC
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 93 (01) : 57 - 110
  • [34] EXAMPLES OF TENSOR CATEGORIES
    GELFAND, S
    KAZHDAN, D
    INVENTIONES MATHEMATICAE, 1992, 109 (03) : 595 - 617
  • [35] Symmetric Determinantal Representations in characteristic 2
    Grenet, Bruno
    Monteil, Thierry
    Thomasse, Stephan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (05) : 1364 - 1381
  • [36] Presentably symmetric monoidal ∞-categories are represented by symmetric monoidal model categories
    Nikolaus, Thomas
    Sagave, Steffen
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (05): : 3189 - 3212
  • [37] MODULE CATEGORIES OVER EQUIVARIANTIZED TENSOR CATEGORIES
    Mombelli, Martin
    Natale, Sonia
    MOSCOW MATHEMATICAL JOURNAL, 2017, 17 (01) : 97 - 128
  • [38] Gray tensor products and Lax functors of (∞, 2)-categories
    Gagna, Andrea
    Harpaz, Yonatan
    Lanari, Edoardo
    ADVANCES IN MATHEMATICS, 2021, 391
  • [39] The Gray tensor product for 2-quasi-categories
    Maehara, Yuki
    ADVANCES IN MATHEMATICS, 2021, 377
  • [40] Finite Symmetric Integral Tensor Categories with the Chevalley Property with an Appendix by Kevin Coulembier and Pavel Etingof
    Etingof, Pavel
    Gelaki, Shlomo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (12) : 9083 - 9121