Symmetric tensor categories in characteristic 2

被引:15
|
作者
Benson, Dave
Etingof, Pavel
机构
基金
美国国家科学基金会;
关键词
Symmetric tensor category; Tilting module; MODULE CATEGORIES; REPRESENTATIONS;
D O I
10.1016/j.aim.2019.05.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct and study a nested sequence of finite symmetric tensor categories Vec = C-0 subset of C-1 subset of center dot center dot center dot C-n subset of center dot center dot center dot over a field of characteristic 2 such that C-2n are incompressible, i.e., do not admit tensor functors into tensor categories of smaller Frobenius-Perron dimension. This generalizes the category C-1 described by Venkatesh [28] and the category C-2 defined by Ostrik. The Grothendieck rings of the categories C-2n and C2n+1 are both isomorphic to the ring of real cyclotomic integers defined by a primitive 2(n+2)-th root of unity, O-n = Z[2 cos(pi/2(n+1))]. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:967 / 999
页数:33
相关论文
共 50 条