Integer-valued Polynomials Over Matrix Rings of Number Fields

被引:0
|
作者
Hafshejani, Javad Sedighi [1 ]
Naghipour, Ali Reza [1 ]
机构
[1] Shahrekord Univ, Dept Math, POB 115, Shahrekord, Iran
关键词
Algebraic integer; Integer-valued polynomial; Galois extension; Matrix ring; Noetherian ring; ALGEBRAIC-SETS;
D O I
10.1007/s41980-020-00484-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the ring of integer-valued polynomials Int(Mn(O-K)) := {f is an element of M-n(K)[x] | f (M-n(O-K)) subset of M-n(O-K)}, where K is a number field and O-K is the ring of algebraic integers of K. We show that for a prime number p is an element of Z, the polynomial f(p,n)(x) := (xp(n) - x)(xp(n-1) - x) ... (x(p) - x) p is an element of Int(M-n(O-K)) if and only if p is a totally split prime in O-K. Also, we consider the ring Int(Mn (Q))(M-n(O-K)) := Int(M-n(O-K)) boolean AND M-n(Q)[x]. Then, we characterize finite Galois extensions K of Q in terms of the ring Int(Mn) ((Q))(M-n(O-K)). In fact, we prove that Int(Mn (Q))(M-n(O-K)) = Int(Mn (Q))(M-n(O-K')) if and only if K = K', where K, K' are two finite Galois extensions of Q. Finally, we present some results on Noetherian property of the rings Int(Mn (Q))(M-n(O-K)). Then, we obtain many non-Noetherian integral domains, IntQ(O-K), between the ring Z[x] and the classical ring of integer-valued polynomials Int(Z).
引用
收藏
页码:2005 / 2013
页数:9
相关论文
共 50 条
  • [31] Almost Krull domains and their rings of integer-valued polynomials
    El Baghdadi, S.
    Izelgue, L.
    Tamoussit, A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (06)
  • [32] Rings of integer-valued polynomials and derivatives on finite sets
    Klingler, Lee
    Villanueva, Yuri
    ARCHIV DER MATHEMATIK, 2013, 100 (03) : 245 - 254
  • [33] Rings of integer-valued polynomials and the bcs-property
    Brewer, J
    Klingler, L
    COMMUTATIVE RING THEORY AND APPLICATIONS, 2003, 231 : 65 - 75
  • [34] RATIOS OF INTEGER-VALUED POLYNOMIALS OVER ANY ALGEBRAIC NUMBER-FIELD
    BRIZOLIS, D
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (09): : 997 - 999
  • [35] RATIOS OF INTEGER-VALUED POLYNOMIALS OVER ANY ALGEBRAIC NUMBER-FIELD
    BRIZOLIS, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A59 - A59
  • [36] TOPOLOGICAL ASPECTS OF THE IDEAL THEORY IN RINGS OF INTEGER-VALUED POLYNOMIALS
    Finocchiaro, Carmelo Antonio
    Loper, K. Alan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (05) : 1809 - 1819
  • [37] Finite generation properties for various rings of integer-valued polynomials
    Bhargava, Manjul
    Cahen, Paul-Jean
    Yeramian, Julie
    JOURNAL OF ALGEBRA, 2009, 322 (04) : 1129 - 1150
  • [38] Integer-valued polynomials over matrices and divided differences
    Peruginelli, Giulio
    MONATSHEFTE FUR MATHEMATIK, 2014, 173 (04): : 559 - 571
  • [39] SOME RESULTS ON INTEGER-VALUED POLYNOMIALS OVER MODULES
    Naghipour, Ali Reza
    Hafshejani, Javad Sedighi
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (05) : 1165 - 1176
  • [40] Integer-valued polynomials over matrices and divided differences
    Giulio Peruginelli
    Monatshefte für Mathematik, 2014, 173 : 559 - 571