Quantum Deformations of Algebras Associated with Integrable Hamiltonian Systems

被引:0
|
作者
Kasperczuk, Stanislaw P. [1 ]
机构
[1] Univ Zielona Gora, Inst Phys, Szafrana 4A, PL-65516 Zielona Gora, Poland
关键词
Poisson bialgebras; Casimir functions; Hamiltonian systems; Integrability; Quantum deformations;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The aim of this paper is to give a general setting, based on quantum deformations, for the explicit construction of certain classes of integrable Hamiltonian systems.
引用
收藏
页码:69 / +
页数:2
相关论文
共 50 条
  • [21] DETERMINANTS IN QUANTUM MATRIX ALGEBRAS AND INTEGRABLE SYSTEMS
    Gurevich, D. I.
    Saponov, P. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 207 (02) : 626 - 639
  • [22] Infinite Dimensional Algebras and Quantum Integrable Systems
    Beltita, Daniel
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (01): : 123 - 124
  • [23] Determinants in quantum matrix algebras and integrable systems
    D. I. Gurevich
    P. A. Saponov
    Theoretical and Mathematical Physics, 2021, 207 : 626 - 639
  • [24] Classical Hamiltonian systems with sl(2) coalgebra symmetry and their integrable deformations
    Ballesteros, A
    Ragnisco, O
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (02) : 954 - 969
  • [25] Infinite Dimensional Algebras and Quantum Integrable Systems
    Beltita, Daniel
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (05): : 601 - 602
  • [26] Integrable Systems Associated to the Filtrations of Lie Algebras
    Jovanovic, Bozidar
    Sukilovic, Tijana
    Vukmirovic, Srdjan
    REGULAR & CHAOTIC DYNAMICS, 2023, 28 (01): : 44 - 61
  • [27] Integrable Systems Associated to the Filtrations of Lie Algebras
    Božidar Jovanović
    Tijana Šukilović
    Srdjan Vukmirović
    Regular and Chaotic Dynamics, 2023, 28 : 44 - 61
  • [28] COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS CONNECTED WITH SEMISIMPLE LIE-ALGEBRAS
    OLSHANETSKY, MA
    PERELOMOV, AM
    INVENTIONES MATHEMATICAE, 1976, 37 (02) : 93 - 108
  • [29] Poisson-Lie groups, bi-Hamiltonian systems and integrable deformations
    Ballesteros, Angel
    Marrero, Juan C.
    Ravanpak, Zohreh
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (14)
  • [30] Integrable deformations of Rikitake systems, Lie bialgebras and bi-Hamiltonian structures
    Ballesteros, Angel
    Blasco, Alfonso
    Gutierrez-Sagredo, Ivan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 137