Compactness and non-compactness for the Yamabe problem on manifolds with boundary

被引:18
|
作者
Disconzi, Marcelo M. [1 ,2 ]
Khuri, Marcus A. [1 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
基金
美国国家科学基金会;
关键词
SCALAR-FLAT METRICS; BLOW-UP PHENOMENA; CONSTANT MEAN-CURVATURE; CONFORMAL DEFORMATIONS; EXISTENCE THEOREM; EQUATION; PROOF; MASS;
D O I
10.1515/crelle-2014-0083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the problem of conformal deformation of Riemannian structure to constant scalar curvature with zero mean curvature on the boundary. We prove compactness for the full set of solutions when the boundary is umbilic and the dimension n <= 24. The Weyl Vanishing Theorem is also established under these hypotheses, and we provide counterexamples to compactness when n >= 25. Lastly, our methods point towards a vanishing theorem for the umbilicity tensor, which will be fundamental for a study of the non-umbilic case.
引用
收藏
页码:145 / 201
页数:57
相关论文
共 50 条
  • [21] Maximal Non-compactness of Sobolev Embeddings
    Lang, Jan
    Musil, Vit
    Olsak, Miroslav
    Pick, Lubos
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (09) : 9406 - 9431
  • [22] Non-compactness of the space of minimal hypersurfaces
    Aiex, Nicolau S.
    MATHEMATISCHE ANNALEN, 2018, 370 (1-2) : 191 - 208
  • [23] INTERPOLATION OF A MEASURE OF WEAK NON-COMPACTNESS
    Szwedek, Radoslaw
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) : 537 - 552
  • [24] KURATOWSKI MEASURE OF NON-COMPACTNESS REVISITED
    LOWEN, R
    QUARTERLY JOURNAL OF MATHEMATICS, 1988, 39 (154): : 235 - 254
  • [25] A NOTE ON PROBABILISTIC MEASURES OF NON-COMPACTNESS
    TAN, DH
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1983, 28 (04): : 283 - 288
  • [26] Non-compactness results for the spinorial Yamabe-type problems with non-smooth geometric data
    Isobe, Takeshi
    Sire, Yannick
    Xu, Tian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (03)
  • [27] Non-compactness results for the spinorial Yamabe-type problems with non-smooth geometric data
    Isobe, Takeshi
    Sire, Yannick
    Xu, Tian
    arXiv, 2023,
  • [28] Non-compactness of the prescribed Q-curvature problem in large dimensions
    Juncheng Wei
    Chunyi Zhao
    Calculus of Variations and Partial Differential Equations, 2013, 46 : 123 - 164
  • [29] Compactness of solutions to the Yamabe problem. II
    Li, YY
    Zhang, L
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (02) : 185 - 237
  • [30] Compactness of solutions to the Yamabe problem. II
    YanYan Li
    Lei Zhang
    Calculus of Variations and Partial Differential Equations, 2005, 24 : 185 - 237