Test for parameter change in the presence of outliers: the density power divergence-based approach

被引:3
|
作者
Song, Junmo [1 ]
Kang, Jiwon [2 ]
机构
[1] Kyungpook Natl Univ, Dept Stat, Daegu, South Korea
[2] Jeju Natl Univ, Dept Comp Sci & Stat, Jeju 63243, South Korea
基金
新加坡国家研究基金会;
关键词
Test for parameter change; robust test; outliers; density power divergence; GARCH models; GARCH; ROBUST; ESTIMATOR; MODELS;
D O I
10.1080/00949655.2020.1842407
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study considers the problem of testing for parameter change, particularly in the presence of outliers. To lessen the impact of outliers, we propose a robust test based on the density power divergence introduced by Basu et al. (Biometrika, 1998), and then derive its limiting null distribution. Our test procedure can be naturally extended to any parametric model to which MDPDE can be applied. To illustrate this, we apply our test procedure to GARCH models. We demonstrate the validity and robustness of the proposed test through a simulation study. In a real data application to the Hang Seng index, our test locates some change-points that are not detected by the existing tests such as the score test and the residual-based CUSUM test.
引用
收藏
页码:1016 / 1039
页数:24
相关论文
共 50 条
  • [21] Testing Composite Hypothesis Based on the Density Power Divergence
    Basu, A.
    Mandal, A.
    Martin, N.
    Pardo, L.
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2018, 80 : 222 - 262
  • [22] MIMO radar waveform design: a divergence-based approach for sequential and fixed-sample size tests
    Grossi, Emanuele
    Lops, Marco
    2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2009, : 165 - 168
  • [23] MIMO radar waveform design: a divergence-based approach for sequential and fixed-sample size tests
    Grossi, Emanuele
    Lops, Marco
    2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2009), 2009, : 165 - 168
  • [24] A Divergence-Based Approach for the Identification of Atrial Fibrillation Focal Drivers From Multipolar Mapping: A Computational Study
    Mase, Michela
    Cristoforetti, Alessandro
    Del Greco, Maurizio
    Ravelli, Flavia
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [25] The Minimum Density Power Divergence Approach in Building Robust Regression Models
    Durio, Alessandra
    Isaia, Ennio Davide
    INFORMATICA, 2011, 22 (01) : 43 - 56
  • [26] Robust estimation in generalized linear models: the density power divergence approach
    Abhik Ghosh
    Ayanendranath Basu
    TEST, 2016, 25 : 269 - 290
  • [27] Robust estimation in generalized linear models: the density power divergence approach
    Ghosh, Abhik
    Basu, Ayanendranath
    TEST, 2016, 25 (02) : 269 - 290
  • [28] Divergence-Based Robust Inference Under Proportional Hazards Model for One-Shot Device Life-Test
    Balakrishnan, Narayanaswamy
    Castilla, Elena
    Martin, Nirian
    Pardo, Leandro
    IEEE TRANSACTIONS ON RELIABILITY, 2021, 70 (04) : 1355 - 1367
  • [29] Sequential online prediction in the presence of outliers and change points: An instant temporal structure learning approach
    Liu, Bin
    Qi, Yu
    Chen, Ke-Jia
    NEUROCOMPUTING, 2020, 413 : 240 - 258
  • [30] Estimation of a tail index based on minimum density power divergence
    Kim, Moosup
    Lee, Sangyeol
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (10) : 2453 - 2471