Test for parameter change in the presence of outliers: the density power divergence-based approach

被引:3
|
作者
Song, Junmo [1 ]
Kang, Jiwon [2 ]
机构
[1] Kyungpook Natl Univ, Dept Stat, Daegu, South Korea
[2] Jeju Natl Univ, Dept Comp Sci & Stat, Jeju 63243, South Korea
基金
新加坡国家研究基金会;
关键词
Test for parameter change; robust test; outliers; density power divergence; GARCH models; GARCH; ROBUST; ESTIMATOR; MODELS;
D O I
10.1080/00949655.2020.1842407
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study considers the problem of testing for parameter change, particularly in the presence of outliers. To lessen the impact of outliers, we propose a robust test based on the density power divergence introduced by Basu et al. (Biometrika, 1998), and then derive its limiting null distribution. Our test procedure can be naturally extended to any parametric model to which MDPDE can be applied. To illustrate this, we apply our test procedure to GARCH models. We demonstrate the validity and robustness of the proposed test through a simulation study. In a real data application to the Hang Seng index, our test locates some change-points that are not detected by the existing tests such as the score test and the residual-based CUSUM test.
引用
收藏
页码:1016 / 1039
页数:24
相关论文
共 50 条
  • [1] Sequential change point test in the presence of outliers: the density power divergence based approach
    Song, Junmo
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 3504 - 3550
  • [2] Test for parameter change based on the estimator minimizing density-based divergence measures
    Lee, S
    Na, O
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2005, 57 (03) : 553 - 573
  • [3] Test for parameter change based on the estimator minimizing density-based divergence measures
    Sangyeol Lee
    Okyoung Na
    Annals of the Institute of Statistical Mathematics, 2005, 57 : 553 - 573
  • [4] Deep divergence-based approach to clustering
    Kampffmeyer, Michael
    Lokse, Sigurd
    Bianchi, Filippo M.
    Livi, Lorenzo
    Salberg, Arnt-Borre
    Jenssen, Robert
    NEURAL NETWORKS, 2019, 113 : 91 - 101
  • [5] A α-Divergence-Based Approach for Robust Dictionary Learning
    Iqbal, Asif
    Seghouane, Abd-Krim
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) : 5729 - 5739
  • [6] Synthetic Tabular Data Validation: A Divergence-Based Approach
    Apellaniz, Patricia A.
    Jimenez, Ana
    Arroyo Galende, Borja
    Parras, Juan
    Zazo, Santiago
    IEEE ACCESS, 2024, 12 : 103895 - 103907
  • [7] Monitoring Parameter Change for Time Series Models of Counts Based on Minimum Density Power Divergence Estimator
    Lee, Sangyeo
    Kim, Dongwon
    ENTROPY, 2020, 22 (11) : 1 - 17
  • [8] On the 'optimal' density power divergence tuning parameter
    Basak, Sancharee
    Basu, Ayanendranath
    Jones, M. C.
    JOURNAL OF APPLIED STATISTICS, 2021, 48 (03) : 536 - 556
  • [9] ON THE ESTIMATION OF THE POWER OF THE SCALE PARAMETER OF THE GAMMA DISTRIBUTION IN THE PRESENCE OF OUTLIERS
    DIXIT, UJ
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (04) : 1315 - 1328
  • [10] A new approach to web users clustering and validation: a divergence-based scheme
    Koutsonikola, Vassiliki A.
    Petridou, Sophia G.
    Vakali, Athena I.
    Papadimitriou, Georgios I.
    INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2009, 5 (03) : 348 - +