Extremal convex polygons inscribed in a given convex polygon

被引:0
|
作者
Kodmon, Csenge Lili [1 ]
Langi, Zsolt [2 ,3 ]
机构
[1] Tech Univ Budapest, Dept Geometry, Egey Jozsef Utca 1, H-1111 Budapest, Hungary
[2] Tech Univ Budapest, MTA BME Morphodynam Res Grp, Egry Jozsef Utca 1, H-1111 Budapest, Hungary
[3] Tech Univ Budapest, Dept Geometry, Egry Jozsef Utca 1, H-1111 Budapest, Hungary
关键词
Convex polygon; Perimeter; Area; Billiard; Dual billiard; ALGORITHM; TRAJECTORIES;
D O I
10.1016/j.comgeo.2021.101844
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A convex polygon Q is inscribed in a convex polygon P if every side of P contains at least one vertex of Q. We present algorithms for finding a minimum area and a minimum perimeter convex polygon inscribed in any given convex n-gon in O(n) and O(n(3)) time, respectively. We also investigate other variants of this problem. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Minimum Convex Partition of a Polygon with Holes by Cuts in Given Directions
    A. Lingas
    V. Soltan
    Theory of Computing Systems, 1998, 31 : 507 - 538
  • [32] Minimum convex partition of a polygon with holes by cuts in given directions
    Department of Computer Science, Lund University, S-22100 Lund, Sweden
    不详
    Theory Comput. Syst., 5 (507-538):
  • [33] Minimum convex partition of a polygon with holes by cuts in given directions
    Lingas, A
    Soltan, V
    ALGORITHMS AND COMPUTATION, 1996, 1178 : 315 - 325
  • [34] An Efficient Algorithm for Touring a Sequence of given Convex Polygons in the Plane
    Xu, Changan
    Jiang, Bo
    Wang, Lijuan
    PROCEEDINGS OF 2017 6TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2017), 2017, : 74 - 78
  • [35] A Fast Algorithm for Touring the Disjoint Convex Polygons in the Given Order
    Wang Lijuan
    He Dandan
    Hou Hongfeng
    Jiang Bo
    Ning Tao
    PROCEEDINGS OF 2017 6TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2017), 2017, : 107 - 111
  • [36] PROBABILITY POLYGONS IN CONVEX POLYGONS
    BUCHTA, C
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1984, 347 : 212 - 220
  • [37] DISSECTIONS OF POLYGONS INTO CONVEX POLYGONS
    Zak, Andrzej
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2010, 20 (02) : 223 - 244
  • [38] Approximation of convex polygons by polygons
    Koutschan, Christoph
    Ponomarchuk, Anton
    Schicho, Josef
    2021 23RD INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2021), 2021, : 91 - 98
  • [39] Extremal problems on convex lattice polygons in sense of lp-metrics
    Zunic, J
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 237 - 250
  • [40] Extremal Problems for Convex Curves with a Given Self Chebyshev Radius
    Balestro, Vitor
    Martini, Horst
    Nikonorov, Yurii
    Nikonorova, Yulia
    RESULTS IN MATHEMATICS, 2021, 76 (02)