Extremal convex polygons inscribed in a given convex polygon

被引:0
|
作者
Kodmon, Csenge Lili [1 ]
Langi, Zsolt [2 ,3 ]
机构
[1] Tech Univ Budapest, Dept Geometry, Egey Jozsef Utca 1, H-1111 Budapest, Hungary
[2] Tech Univ Budapest, MTA BME Morphodynam Res Grp, Egry Jozsef Utca 1, H-1111 Budapest, Hungary
[3] Tech Univ Budapest, Dept Geometry, Egry Jozsef Utca 1, H-1111 Budapest, Hungary
关键词
Convex polygon; Perimeter; Area; Billiard; Dual billiard; ALGORITHM; TRAJECTORIES;
D O I
10.1016/j.comgeo.2021.101844
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A convex polygon Q is inscribed in a convex polygon P if every side of P contains at least one vertex of Q. We present algorithms for finding a minimum area and a minimum perimeter convex polygon inscribed in any given convex n-gon in O(n) and O(n(3)) time, respectively. We also investigate other variants of this problem. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] AN EXTREMAL PROBLEM FOR POLYGONS INSCRIBED IN A CONVEX CURVE
    BOLLOBAS, B
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (03): : 523 - &
  • [2] DECOMPOSITION OF A CONVEX POLYGON INTO CONVEX POLYGONS
    BLIND, G
    DISCRETE MATHEMATICS, 1979, 26 (01) : 1 - 15
  • [3] Polygons Inscribed in a Convex Figure
    Makeev V.V.
    Journal of Mathematical Sciences, 2016, 212 (5) : 527 - 530
  • [4] Extremal problems for convex polygons
    Audet, Charles
    Hansen, Pierre
    Messine, Frederic
    JOURNAL OF GLOBAL OPTIMIZATION, 2007, 38 (02) : 163 - 179
  • [5] Extremal problems for convex polygons
    Charles Audet
    Pierre Hansen
    Frédéric Messine
    Journal of Global Optimization, 2007, 38 : 163 - 179
  • [6] EXTREMAL TRIANGULATIONS OF CONVEX POLYGONS
    Bezdek, Andras
    Fodor, Ferenc
    SYMMETRY-CULTURE AND SCIENCE, 2011, 22 (3-4): : 427 - 434
  • [7] OPTIMAL INSCRIBED POLYGONS IN CONVEX CURVES
    LEW, JS
    QUARLES, DA
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (10): : 886 - 902
  • [8] Largest inscribed rectangles in convex polygons
    Knauer, Christian
    Schlipf, Lena
    Schmidt, Jens M.
    Tiwary, Hans Raj
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 13 : 78 - 85
  • [9] On maximal convex lattice polygons inscribed in a plane convex set
    Barany, Imre
    ISRAEL JOURNAL OF MATHEMATICS, 2006, 154 (1) : 337 - 360
  • [10] On maximal convex lattice polygons inscribed in a plane convex set
    Imre Bárány
    Maria Prodromou
    Israel Journal of Mathematics, 2006, 154 : 337 - 360