Scaling technique for Partition-Nekrasov matrices

被引:9
|
作者
Szulc, Tomasz [1 ]
Cvetkovic, Ljiljana [2 ]
Nedovic, Maja [3 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, Poland
[2] Univ Novi Sad, Dept Math & Informat, Fac Sci, Novi Sad 21000, Serbia
[3] Univ Novi Sad, Fac Tech Sci, Novi Sad 21000, Serbia
关键词
Nekrasov matrices; Diagonal scaling; Schur complement; DIAGONALLY DOMINANT MATRICES; H-MATRICES; SCHUR;
D O I
10.1016/j.amc.2015.08.136
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that for a given H-matrix A there exists a diagonal nonsingular matrix that scales A (by multiplying it from the right) to a strictly diagonally dominant (SDD) matrix. There are subclasses of H-matrices that can be fully characterised by the form of the corresponding diagonal scaling matrices. However, for some applications, it is not necessary to have such full characterisation. It is sufficient to find at least one scaling matrix that will do the job. The aim of this paper is to present a way of constructing a diagonal scaling matrix for one special subclass of H-matrices called Partition-Nekrasov matrices. As an application of this scaling approach, we obtain eigenvalue localisation for the corresponding Schur complement matrix, using only the entries of the original matrix. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:201 / 208
页数:8
相关论文
共 50 条
  • [21] Further Block Generalizations of Nekrasov Matrices
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2022, 262 (1) : 42 - 61
  • [22] Error Bounds for Linear Complementarity Problems of Nekrasov and Generalized Nekrasov Matrices
    Wang, Shiyun
    Liu, Dan
    Tian, Wanfu
    Lyu, Zhen-Hua
    ACTA APPLICANDAE MATHEMATICAE, 2024, 191 (01)
  • [23] β-deformed matrix model and Nekrasov partition function
    Nishinaka, Takahiro
    Rim, Chaiho
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (02):
  • [24] Bounds for the inverses of generalized nekrasov matrices
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2015, 207 (5) : 786 - 794
  • [25] Notes on New Error Bounds for Linear Complementarity Problems of Nekrasov Matrices, B-Nekrasov Matrices and QN-Matrices
    Dai, Ping-Fan
    Li, Jicheng
    Bai, Jianchao
    Dong, Liqiang
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (04) : 1191 - 1212
  • [26] β-deformed matrix model and Nekrasov partition function
    Takahiro Nishinaka
    Chaiho Rim
    Journal of High Energy Physics, 2012
  • [27] A GENERALIZATION OF S-NEKRASOV MATRICES
    Lyu, Zhen-Hua
    Zhou, Lixin
    Liu, Jianzhou
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (03): : 1093 - 1100
  • [28] The Iterative Criterion for Generalized Nekrasov Matrices
    Guo, Aili
    Xu, Nana
    Liu, Jianzhou
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 83 - 86
  • [29] Virasoro constraint for Nekrasov instanton partition function
    Kanno, Shoichi
    Matsuo, Yutaka
    Zhang, Hong
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (10):
  • [30] Deformed topological partition function and Nekrasov backgrounds
    Antoniadis, I.
    Hohenegger, S.
    Narain, K. S.
    Taylor, T. R.
    NUCLEAR PHYSICS B, 2010, 838 (03) : 253 - 265