Scaling technique for Partition-Nekrasov matrices

被引:9
|
作者
Szulc, Tomasz [1 ]
Cvetkovic, Ljiljana [2 ]
Nedovic, Maja [3 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, Poland
[2] Univ Novi Sad, Dept Math & Informat, Fac Sci, Novi Sad 21000, Serbia
[3] Univ Novi Sad, Fac Tech Sci, Novi Sad 21000, Serbia
关键词
Nekrasov matrices; Diagonal scaling; Schur complement; DIAGONALLY DOMINANT MATRICES; H-MATRICES; SCHUR;
D O I
10.1016/j.amc.2015.08.136
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that for a given H-matrix A there exists a diagonal nonsingular matrix that scales A (by multiplying it from the right) to a strictly diagonally dominant (SDD) matrix. There are subclasses of H-matrices that can be fully characterised by the form of the corresponding diagonal scaling matrices. However, for some applications, it is not necessary to have such full characterisation. It is sufficient to find at least one scaling matrix that will do the job. The aim of this paper is to present a way of constructing a diagonal scaling matrix for one special subclass of H-matrices called Partition-Nekrasov matrices. As an application of this scaling approach, we obtain eigenvalue localisation for the corresponding Schur complement matrix, using only the entries of the original matrix. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:201 / 208
页数:8
相关论文
共 50 条
  • [1] Partition-Nekrasov type matrices: A new subclass of nonsingular H-matrices and applications
    Nedovic, Maja
    Sanca, Ernest
    FILOMAT, 2024, 38 (14) : 5083 - 5097
  • [2] Infinity norm bounds for the inverse of Nekrasov matrices using scaling matrices
    Orera, H.
    Pena, J. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 : 119 - 127
  • [3] On ?-Nekrasov matrices
    Arsic, Dunja
    Nedovic, Maja
    FILOMAT, 2023, 37 (13) : 4335 - 4350
  • [4] On Nekrasov matrices
    Li, W
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 281 (1-3) : 87 - 96
  • [5] Gluing Nekrasov Partition Functions
    Qiu, Jian
    Tizzano, Luigi
    Winding, Jacob
    Zabzine, Maxim
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (02) : 785 - 816
  • [6] Analyticity of Nekrasov Partition Functions
    Giovanni Felder
    Martin Müller-Lennert
    Communications in Mathematical Physics, 2018, 364 : 683 - 718
  • [7] Analyticity of Nekrasov Partition Functions
    Felder, Giovanni
    Mueller-Lennert, Martin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 364 (02) : 683 - 718
  • [8] Gluing Nekrasov Partition Functions
    Jian Qiu
    Luigi Tizzano
    Jacob Winding
    Maxim Zabzine
    Communications in Mathematical Physics, 2015, 337 : 785 - 816
  • [9] Some characterizations of nekrasov and s-nekrasov matrices
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2015, 207 (5) : 767 - 775
  • [10] Bounds for the determinants of nekrasov and S-nekrasov matrices
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2015, 207 (5) : 776 - 785