Synergistic effect of co-existence of hematite (α-Fe2O3) and magnetite (Fe3O4) nanoparticles on graphene sheet for dye adsorption

被引:63
|
作者
Saiphaneendra, B. [1 ]
Saxena, Tejas [1 ]
Singh, Satyapaul A. [2 ]
Madras, Giridhar [2 ]
Srivastava, Chandan [1 ]
机构
[1] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Dept Chem Engn, Bangalore 560012, Karnataka, India
来源
关键词
Graphene oxide (GO); Hematite; Magnetite; Methylene blue adsorption; WALLED CARBON NANOTUBES; AQUEOUS-SOLUTION; REDUCED GRAPHENE; METHYLENE-BLUE; ACTIVATED CARBON; FACILE SYNTHESIS; ANODE MATERIAL; OXIDE; REMOVAL; WATER;
D O I
10.1016/j.jece.2016.11.017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Graphene oxide (GO) functionalized with hematite (alpha-Fe2O3) and magnetite (Fe3O4) nanoparticles (rGO-Fe2O3-Fe3O4) was prepared using a facile one-step co-precipitation technique. It shows superior performance towards methylene blue (MB) adsorption for water purification, compared to GO functionalized with hematite (rGO-Fe2O3) or magnetite (rGO-Fe3O4) nanoparticles. It also shows better performance compared to a composite mixture of rGO-Fe2O3 and rGO-Fe3O4 (rGO-M). It has been postulated that the co-existence of hematite and magnetite nanoparticles on graphene sheet causes the synergistic effect towards MB adsorption. The adsorption behaviour of GO, reduced graphene oxide (rGO), rGO-Fe2O3, rGO-Fe3O4, rGO-Fe2O3-Fe3O4 and rGO-M was studied. These materials were characterized using XRD, XPS, Raman spectroscopy, TGA, TEM, VSM and BET surface area analyzer. The phases present in the as-synthesized adsorbents were identified by XRD, Raman and XPS techniques. TGA studies confirmed the strong bonding between iron oxide particles and graphene sheet. TEM characterization was used for nanoparticles morphology and size distribution studies. Kinetics of MB adsorption was well described by the pseudo second order model. Langmuir adsorption isotherm better fits the equilibrium adsorption behaviour of rGO-Fe2O3-Fe3O4 as compared to Freundlich isotherm and the maximum adsorption capacity was determined to be 72.8 +/- 2.7 mg/g. Regeneration and reusability studies performed on rGO-Fe2O3-Fe3O4 revealed that it retains more than 65% of the original adsorption capacity even after 3 cycles thus making it a potential candidate for water treatment. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:26 / 37
页数:12
相关论文
共 50 条
  • [41] Kinetic Study on the Oxidation of Fe3O4 to γ-Fe2O3
    赵新宇
    李春忠
    郑柏存
    胡黎明
    华东理工大学学报(自然科学版), 1995, (05) : 561 - 566
  • [42] MAGNETITE (FE3O4) NANOPARTICLES: ARE THEY REALLY SAFE?
    Ramirez, Lenin
    GRANJA-REVISTA DE CIENCIAS DE LA VIDA, 2015, 21 (01): : 76 - 82
  • [43] The synthesis of maghemite and hematite (γ-Fe2O3, α-Fe2O3) nanospheres
    Dar, M. A.
    Ansari, S. G.
    Wahab, R.
    Kim, Young-Soon
    Shin, Hyung-Shik
    PROGRESS IN POWDER METALLURGY, PTS 1 AND 2, 2007, 534-536 : 157 - +
  • [44] Transformation of α-Fe2O3 to Fe3O4 Realized by Mechanochemical Reaction of α-Fe2O3 and SrCO3
    Wang, Haizhu
    He, Qiang
    Yao, Bin
    Wen, Gehui
    Wang, Fang
    Xu, Ying
    Li, Yue
    Li, Jichao
    Zhou, Chenbin
    Wang, Jie
    Li, Guodong
    Shan, Liang
    Chen, Jian
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2012, 43 (06): : 1574 - 1578
  • [45] Transformation of α-Fe2O3 to Fe3O4 Realized by Mechanochemical Reaction of α-Fe2O3 and SrCO3
    Haizhu Wang
    Qiang He
    Bin Yao
    Gehui Wen
    Fang Wang
    Ying Xu
    Yue Li
    Jichao Li
    Chenbin Zhou
    Jie Wang
    Guodong Li
    Liang Shan
    Jian Chen
    Metallurgical and Materials Transactions B, 2012, 43 : 1574 - 1578
  • [46] CONTRIBUTION TO STUDY OF MECHANISM OF REDUCTION FROM FE2O3 ALPHA HEMITE TO FE3O4 MAGNETITE
    CLAUDINON, J
    HEIZMANN, JJ
    BARO, R
    MEMOIRES SCIENTIFIQUES DE LA REVUE DE METALLURGIE, 1967, 64 (05): : 423 - +
  • [47] Remediation of arsenic contaminated groundwater with magnetite (Fe3O4) and chitosan coated Fe3O4 nanoparticles
    Ahuja, S.
    Mahanta, C.
    Sathe, S.
    Menan, L. C.
    Vipasha, M.
    ENVIRONMENTAL ARSENIC IN A CHANGING WORLD (AS2018), 2018, : 453 - 454
  • [48] Interface electronic structures of BaTiO3@X nanoparticles (X=γ-Fe2O3, Fe3O4, α-Fe2O3, and Fe) investigated by XAS and XMCD
    Kim, D. H.
    Lee, H. J.
    Kim, G.
    Koo, Y. S.
    Jung, J. H.
    Shin, H. J.
    Kim, J. -Y.
    Kang, J. -S.
    PHYSICAL REVIEW B, 2009, 79 (03):
  • [49] Fluoride adsorption on γ - Fe2O3 nanoparticles
    Jayarathna, Lakmal
    Bandara, Athula
    Ng, W. J.
    Weerasooriya, Rohan
    JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING, 2015, 13
  • [50] Fluoride adsorption on γ − Fe2O3 nanoparticles
    Lakmal Jayarathna
    Athula Bandara
    W.J. Ng
    Rohan Weerasooriya
    Journal of Environmental Health Science and Engineering, 13