Centroaffine geometry of equiaffine rotation surfaces in R3

被引:7
|
作者
Yang, Yun [1 ]
Yu, Yanhua [1 ]
Liu, Huili [1 ]
机构
[1] Northeastern Univ, Dept Math, Shenyang 110004, Peoples R China
关键词
Centroaffine differential geometry; Rotation surface; Minimal surface; MINIMAL-SURFACES; CURVATURE;
D O I
10.1016/j.jmaa.2013.12.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the invariant properties for affine rotation surfaces in 3-affine space R-3 under the centroaffine transformation group. With the additional property of the vanishing centroaffine Pick invariant, a complete classification is obtained. By solving certain differential equations, we also give some classification results for centroaffine minimal rotation surfaces with the constant tensor norm of the Tchebychev vector field induced by the centroaffine metric. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 60
页数:15
相关论文
共 50 条
  • [31] RESTRICTION FOR HOMOGENEOUS POLYNOMIAL SURFACES IN R3
    Carbery, A.
    Kenig, C. E.
    Ziesler, S. N.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (05) : 2367 - 2407
  • [32] JACOBI FIELDS TO MINIMAL SURFACES IN R3
    BOHME, R
    MANUSCRIPTA MATHEMATICA, 1975, 16 (01) : 51 - 73
  • [33] PROJECTIONS AND REFLECTIONS OF GENERIC SURFACES IN R3
    BRUCE, JW
    MATHEMATICA SCANDINAVICA, 1984, 54 (02) : 262 - 278
  • [34] Restriction for flat surfaces of revolution in R3
    Carbery, A.
    Kenig, C.
    Ziesler, S.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (06) : 1905 - 1914
  • [35] Self θ-congruent minimal surfaces in R3
    Chen, WH
    Fang, Y
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2000, 69 : 229 - 244
  • [36] Hyperbolic linear weingarten surfaces in R3
    Sanchez, Juan A. Aledo
    Espinar, Jose M.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2007, 38 (02): : 291 - 300
  • [37] THE DYNAMICS THEOREM FOR CMC SURFACES IN R3
    Meeks, William H., III
    Tinaglia, Giuseppe
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2010, 85 (01) : 141 - 173
  • [38] THE NORMAL-SINGULARITIES OF SURFACES IN R3
    PORTEOUS, IR
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1983, 40 : 379 - 393
  • [39] Frame and direction mappings for surfaces in R3
    Bruce, J. W.
    Tari, F.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (03) : 795 - 830
  • [40] ON HARMONIC QUASICONFORMAL IMMERSIONS OF SURFACES IN R3
    Alarcon, Antonio
    Lopez, Franscisco. J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (04) : 1711 - 1742