Nonlinear dynamics of an integrable gauge-coupled exciton-phonon system on a regular one-dimensional lattice

被引:2
|
作者
Vakhnenko, Oleksiy O. [1 ]
机构
[1] Natl Acad Sci Ukraine, Bogolyubov Inst Theoret Phys, Dept Theory Nonlinear Proc Condensed Matter, UA-03143 Kiev, Ukraine
关键词
integrable exciton-phonon system; gauge-like coupling; one-dimensional lattice; Darboux-Backlund transformation; dipole-monopole criticality; EXCITATIONS;
D O I
10.1063/10.0009543
中图分类号
O59 [应用物理学];
学科分类号
摘要
A one-dimensional nonlinear dynamical system of intra-site excitations and lattice vibrations coupled via gauge-like mechanism is studied. The system admits the semi-discrete zero-curvature representation and therefore it proves to be integrable in the Lax sense. Relaying upon an appropriately developed Darboux-Backlund dressing technique the explicit four-component analytical solution to the system is found and analyzed in details. Due to mutual influence between the interacting subsystems the physically meaningful solution arises as the essentially nonlinear superposition of two principally distinct types of traveling waves. The interplay between the two typical spatial scales relevant to these traveling waves causes the criticality of system's dynamics manifested as the dipole-monopole transition in the spatial distribution of intra-site excitations.
引用
收藏
页码:239 / 245
页数:7
相关论文
共 50 条