In this paper, we systematically recover the identities for the q-eta numbers eta(k) and the q-eta polynomials eta(k)(x), presented by Carlitz [L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948) 987-1000], which we de. ne here via generating series rather than via the difference equations of Carlitz. Following a method developed by Kaneko et al. [M. Kaneko, N. Kurokawa, M. Wakayama, A variation of Euler's approach to the Riemann zeta function, Kyushu J. Math. 57 (2003) 175-192] for a canonical q-extension of the Riemann zeta function, we investigate a similarly constructed q-extension of the Hurwitz zeta function. The details of this investigation disclose some interesting connections among q-eta polynomials, Carlitz's q-Bernoulli polynomials B-k(x), epsilon-polynomials, and the q-Bernoulli polynomials that emerge from the q-extension of the Hurwitz zeta function discussed here. (C) 2009 Elsevier Inc. All rights reserved.