HYBRID EXTRAGRADIENT METHODS FOR FINDING MINIMUM-NORM SOLUTIONS OF SPLIT FEASIBILITY PROBLEMS

被引:0
|
作者
Ceng, Lu-Chuan [2 ,3 ]
Wong, Ngai-Ching [1 ,4 ]
Yao, Jen-Chih [5 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Sci Comp Key Lab Shanghai Univ, Shanghai 200234, Peoples R China
[4] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
[5] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
基金
美国国家科学基金会;
关键词
Split feasibility problems; fixed point problems; hybrid extragradient methods; strictly pseudocontractive mappings; nonexpansive mappings; minimum-norm solutions; demiclosedness principle; algorithms; FIXED-POINT PROBLEMS; VARIATIONAL-INEQUALITIES; NONEXPANSIVE-MAPPINGS; STRONG-CONVERGENCE; MONOTONE MAPPINGS; WEAK-CONVERGENCE; PROJECTION METHODS; HILBERT-SPACES; CQ ALGORITHM; SETS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the split feasibility problem (SFP) on a nonempty closed convex subset C of a Hilbert space of arbitrary dimension. When C is given as the common fixed point set of nonexpansive mappings, combining Mann's iterative method, Korpelevich's extragradient method and the hybrid steepest-descent method, we develop an iterative algorithm. This algorithm provides the strong convergence to the minimum-norm solution of the SFP. On the other hand, we study the hybrid extragradient methods for finding a common element of the solution set Gamma of the SFP and the set Fix(S) of fixed points of a strictly pseudocontractive mapping S. We propose an iterative algorithm which generates sequences converging weakly to an element of Fix(S) boolean AND Gamma.
引用
收藏
页码:1965 / 1983
页数:19
相关论文
共 50 条
  • [41] A MODIFIED EXTRAGRADIENT METHOD FOR THE SPLIT FEASIBILITY AND FIXED POINT PROBLEMS
    Yao, Yonghong
    Kim, Tae Hwa
    Chebbi, Souhail
    Xu, Hong-Kun
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2012, 13 (03) : 383 - 396
  • [42] Iterative algorithms for finding minimum-norm fixed point of nonexpansive mappings and applications
    Tang, Yuchao
    Liu, Liwei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (08) : 1137 - 1146
  • [43] Generalized extragradient iterative methods for solving split feasibility and fixed point problems in Hilbert spaces
    P. Chuasuk
    A. Kaewcharoen
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [44] An extragradient method for solving split feasibility and fixed point problems
    Ceng, L-C
    Ansari, Q. H.
    Yao, J-C
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (04) : 633 - 642
  • [45] Generalized extragradient iterative methods for solving split feasibility and fixed point problems in Hilbert spaces
    Chuasuk, P.
    Kaewcharoen, A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)
  • [46] Inertial Extragradient Methods for Solving Split Equilibrium Problems
    Suantai, Suthep
    Petrot, Narin
    Khonchaliew, Manatchanok
    MATHEMATICS, 2021, 9 (16)
  • [47] Hybrid iterative methods for multiple sets split feasibility problems
    Cheng Q.
    Srivastava R.
    Yuan Q.
    Applied Set-Valued Analysis and Optimization, 2019, 1 (02): : 135 - 147
  • [48] THE HYBRID EXTRAGRADIENT IMPLICIT APPROACH FOR CONVEX FEASIBILITY PROBLEMS
    Di, Lan
    Yuan, George Xianzhi
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (09) : 1943 - 1958
  • [49] Iterative Methods for Finding Solutions of a Class of Split Feasibility Problems over Fixed Point Sets in Hilbert Spaces
    Suantai, Suthep
    Petrot, Narin
    Suwannaprapa, Montira
    MATHEMATICS, 2019, 7 (11)
  • [50] HYBRID EXTRAGRADIENT-LIKE APPROXIMATION METHOD WITH REGULARIZATION FOR SOLVING SPLIT FEASIBILITY AND FIXED POINT PROBLEMS
    Ceng, L. C.
    Wong, M. M.
    Yao, J. C.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2013, 14 (01) : 163 - 182