Volterra type operators on growth Fock spaces

被引:9
|
作者
Abakumov, Evgeny [1 ]
Doubtsov, Evgueni [2 ]
机构
[1] Univ Paris Est, LAMA, UMR 8050, F-77454 Marne La Vallee, France
[2] VA Steklov Math Inst, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
关键词
Growth Fock space; Essential weight; Volterra type operator; EXTENDED CESARO OPERATORS;
D O I
10.1007/s00013-016-1007-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be an unbounded radial weight on , . Using results related to approximation of by entire maps, we investigate Volterra type and weighted composition operators defined on the growth space . Special attention is given to the operators defined on the growth Fock spaces.
引用
收藏
页码:383 / 393
页数:11
相关论文
共 50 条
  • [21] Isolated and essentially isolated Volterra-type integral operators on generalized Fock spaces
    Mengestie, Tesfa
    Worku, Mafuz
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, 30 (01) : 41 - 54
  • [22] Composition operators on Fock type spaces
    Guo, Kunyu
    Izuchi, Keiji
    ACTA SCIENTIARUM MATHEMATICARUM, 2008, 74 (3-4): : 807 - 828
  • [23] VOLTERRA TYPE OPERATORS ON MORREY TYPE SPACES
    Qian, Ruishen
    Li, Songxiao
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1589 - 1599
  • [24] VOLTERRA TYPE OPERATORS ON QK SPACES
    Li, Songxiao
    Wulan, Hasi
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (01): : 195 - 211
  • [25] A VOLTERRA-TYPE INTEGRATION OPERATOR ON FOCK SPACES
    Constantin, Olivia
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (12) : 4247 - 4257
  • [26] Composition operators on fock-type spaces
    Qin, Jie
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (01): : 1 - 14
  • [27] Dual operators in Fock-type spaces
    V. V. Napalkov
    V. V. Napalkov
    Doklady Mathematics, 2007, 75 : 428 - 430
  • [28] Composition operators on fock-type spaces
    Jie Qin
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 1 - 14
  • [29] Dual operators in Fock-type spaces
    Napalkov, V. V.
    Napalkov, V. V., Jr.
    DOKLADY MATHEMATICS, 2007, 75 (03) : 428 - 430
  • [30] Toeplitz Operators on Fock–Sobolev Type Spaces
    Hong Rae Cho
    Joshua Isralowitz
    Jae-Cheon Joo
    Integral Equations and Operator Theory, 2015, 82 : 1 - 32