Application of an improved variational method to the D-dimensional generalized anharmonic oscillator

被引:6
|
作者
Popescu, V [1 ]
机构
[1] Univ Politech Bucharest, Dept Phys, Bucharest 77206, Romania
关键词
D O I
10.1016/S0375-9601(02)00653-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A recently improved systematic variational scheme is applied to the determination of the energy of the ground state and first even-parity excited state of a single-well anharmonic oscillator and of a bidimensional anharmonic isotropic oscillator, If we use the deepest local minimum in the energy in function of a single variational parameter we obtain closer results to the exact values for small N truncation, We use another variational parameter which illustrate better the increase of the nonperturbed Hamiltonian and decrease of the perturbation. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:197 / 200
页数:4
相关论文
共 50 条
  • [32] Modified laplace transformation method and its application to the anharmonic oscillator
    Mizutani, N
    Yamada, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (31): : 5687 - 5709
  • [33] EFFECT OF A WHITE-NOISE ON THE D-DIMENSIONAL HARMONIC-OSCILLATOR
    ENRIQUEZ, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (02): : 153 - 155
  • [34] Path integral approach to the D-dimensional harmonic oscillator with minimal length
    Chargui, Y.
    Chetouani, L.
    Trabelsi, A.
    PHYSICA SCRIPTA, 2010, 81 (01)
  • [35] GENERALIZED D-DIMENSIONAL LAGRANGIANS AND EARLY GRAVITATIONAL-WAVES
    AMENDOLA, L
    LITTERIO, M
    OCCHIONERO, F
    PHYSICS LETTERS B, 1990, 237 (3-4) : 348 - 352
  • [36] The construction of partner potential from the general potential anharmonic in D-dimensional Schrodinger system
    Suparmi
    Cari, C.
    Wea, K. N.
    Wahyulianti
    SEMINAR NASIONAL FISIKA (SNF) 2017, 2018, 997
  • [37] Exact Results for the Nonergodicity of d-Dimensional Generalized Levy Walks
    Albers, Tony
    Radons, Guenter
    PHYSICAL REVIEW LETTERS, 2018, 120 (10)
  • [38] VARIATIONAL METHOD FOR THE FREE-ENERGY APPROXIMATION OF GENERALIZED ANHARMONIC-OSCILLATORS
    VLACHOS, K
    PHYSICAL REVIEW A, 1993, 47 (02): : 838 - 846
  • [39] Exact Solution of D-Dimensional Klein-Gordon Oscillator with Minimal Length
    Y.Chargui
    L.Chetouani
    A.Trabelsi
    Communications in Theoretical Physics, 2010, 53 (02) : 231 - 236
  • [40] Optimal Homotopy Asymptotic Method for an Anharmonic Oscillator: Application to the Chen System
    Ene, Remus-Daniel
    Pop, Nicolina
    MATHEMATICS, 2023, 11 (05)