Mitochondrial-nuclear genome interactions in non-alcoholic fatty liver disease in mice

被引:35
|
作者
Betancourt, Angela M. [1 ]
King, Adrienne L. [2 ]
Fetterman, Jessica L. [1 ]
Millender-Swain, Telisha [1 ]
Finley, Rachel D. [1 ]
Oliva, Claudia R. [3 ]
Crowe, David R. [1 ]
Ballinger, Scott W. [1 ,4 ]
Bailey, Shannon M. [1 ,2 ,4 ]
机构
[1] Univ Alabama Birmingham, Dept Pathol, Birmingham, AL 35294 USA
[2] Univ Alabama Birmingham, Dept Environm Hlth Sci, Birmingham, AL USA
[3] Univ Alabama Birmingham, Dept Neurosurg, Birmingham, AL USA
[4] Univ Alabama Birmingham, Ctr Free Radical Biol, Birmingham, AL USA
基金
美国国家卫生研究院;
关键词
bioenergetics; inflammation; liver; mtDNA; non-alcoholic fatty liver disease (NAFLD); steatosis; CHRONIC ETHANOL-CONSUMPTION; FACTOR-DEPENDENT PRODUCTION; PROFIBROTIC MEDIATORS; METABOLISM; HYPOXIA; OBESITY; STEATOHEPATITIS; SUSCEPTIBILITY; INTEGRATION; STEATOSIS;
D O I
10.1042/BJ20131433
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
NAFLD (non-alcoholic fatty liver disease) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. In the present study, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, MNX (mitochondrial-nuclear exchange) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared with wildtype C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wildtype mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR (respiratory control ratio) when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondria] and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD.
引用
收藏
页码:223 / 232
页数:10
相关论文
共 50 条
  • [21] Non-Alcoholic Fatty Liver Disease
    Engin, Atilla
    [J]. OBESITY AND LIPOTOXICITY, 2017, 960 : 443 - 467
  • [22] Non-alcoholic fatty liver disease
    Brent A. Neuschwander-Tetri
    [J]. BMC Medicine, 15
  • [23] Non-alcoholic fatty liver disease
    Alba, LM
    Lindor, K
    [J]. ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2003, 17 (08) : 977 - 986
  • [24] Metabolism of human liver on a genome scale in non-alcoholic fatty liver disease
    Sen, Parho
    Govaere, Olivier
    McGlinchey, Aidan
    Ratziu, Vlad
    Bugianesi, Elisabetta
    Schattenberg, Jorn M.
    Allison, Michael
    Cockell, Simon
    Daly, Ann K.
    Hyotylainen, Tuulia
    Anstee, Quentin
    Oresic, Matej
    [J]. JOURNAL OF HEPATOLOGY, 2020, 73 : S671 - S672
  • [25] Hydrogen sulfide and mitochondrial function in Non-Alcoholic Fatty Liver Disease
    Prip-buus, Carina
    [J]. EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2019, 49 : 20 - 20
  • [26] Parental non-alcoholic fatty liver disease increases risk of non-alcoholic fatty liver disease in offspring
    Long, Michelle T.
    Gurary, Ellen B.
    Massaro, Joseph M.
    Ma, Jiantao
    Hoffmann, Udo
    Chung, Raymond T.
    Benjamin, Emelia J.
    Loomba, Rohit
    [J]. LIVER INTERNATIONAL, 2019, 39 (04) : 740 - 747
  • [27] Statins for non-alcoholic fatty liver disease and non-alcoholic steatohepatitis
    Eslami, Layli
    Merat, Shahin
    Malekzadeh, Reza
    Nasseri-Moghaddam, Siavosh
    Aramin, Hermineh
    [J]. COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2013, (12):
  • [28] Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease
    Xiao, Yang
    Kim, Mindy
    Lazar, Mitchell A.
    [J]. MOLECULAR METABOLISM, 2020, 50
  • [29] Non-alcoholic fatty liver disease, non-alcoholic steatohepatitis and orthotopic liver transplantation
    Burke, A
    Lucey, MR
    [J]. AMERICAN JOURNAL OF TRANSPLANTATION, 2004, 4 (05) : 686 - 693
  • [30] NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD) IS RELATED TO NON-ALCOHOLIC FATTY PANCREAS DISEASE (NAFPD)
    van Geenen, Erwin-Jan M.
    Smits, Mark M.
    Schreuder, Tim C.
    Bloemena, Elisabeth
    van der Peet, Donald L.
    Mulder, Chris J.
    [J]. HEPATOLOGY, 2009, 50 (04) : 788A - 788A