Driven and damped double sine-Gordon equation: The influence of internal modes on the soliton ratchet mobility

被引:5
|
作者
Quintero, Niurka R. [1 ]
Alvarez-Nodarse, R. [2 ,3 ]
Mertens, Franz G. [4 ]
机构
[1] Univ Seville, EUP, Dept Fis Aplicada 1, Seville 41011, Spain
[2] Univ Seville, Dept Anal Matemat, E-41080 Seville, Spain
[3] Univ Seville, IMUS, E-41080 Seville, Spain
[4] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 01期
关键词
KINK-ANTIKINK INTERACTIONS; DYNAMICS;
D O I
10.1103/PhysRevE.80.016605
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This work studies the damped double sine-Gordon equation driven by a biharmonic force, where a parameter lambda controls the existence and the frequency of an internal mode. The role of internal oscillations of the kink width in ratchet dynamics of kink is investigated within the framework of collective coordinate theories. It is found that the ratchet velocity of the kink, when an internal mode appears in this system, decreases contrary to what was expected. It is also shown that the kink exhibits a higher mobility in the double sine-Gordon without internal mode, but with a quasilocalized first phonon mode.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Soliton evolution and radiation loss for the sine-Gordon equation
    Smyth, NF
    Worthy, AL
    PHYSICAL REVIEW E, 1999, 60 (02): : 2330 - 2336
  • [42] Breather and soliton wave families for the sine-Gordon equation
    Vitanov, NK
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1977): : 2409 - 2423
  • [43] One-dimensional global attractor for discretization of the damped driven sine-Gordon equation
    Peking Univ, Beijing, China
    Nonlinear Anal Theory Methods Appl, 7 (941-951):
  • [44] One-dimensional global attractor for discretization of the damped driven sine-Gordon equation
    Qian, M
    Qin, WX
    Zhu, S
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (07) : 941 - 951
  • [45] CHAOS IN THE INHOMOGENEOUSLY DRIVEN SINE-GORDON EQUATION
    EILBECK, JC
    LOMDAHL, PS
    NEWELL, AC
    PHYSICS LETTERS A, 1981, 87 (1-2) : 1 - 4
  • [46] DILUTE SINE-GORDON SOLITON GAS LIMIT IN THE STATISTICAL-MECHANICS OF DOUBLE SINE-GORDON SYSTEMS
    GIACHETTI, R
    SORACE, E
    TOGNETTI, V
    PHYSICS LETTERS A, 1988, 128 (05) : 256 - 259
  • [47] Revisiting the inhomogeneously driven sine-Gordon equation
    Jagtap, Ameya D.
    Saha, Esha
    George, Jithin D.
    Murthy, A. S. Vasudeva
    WAVE MOTION, 2017, 73 : 76 - 85
  • [48] Perturbation theory for the double sine-Gordon equation
    Popov, CA
    WAVE MOTION, 2005, 42 (04) : 309 - 316
  • [49] Exact solutions to the double Sine-Gordon equation
    Wang, ML
    Li, XZ
    CHAOS SOLITONS & FRACTALS, 2006, 27 (02) : 477 - 486
  • [50] A MECHANICAL ANALOG FOR THE DOUBLE SINE-GORDON EQUATION
    SALERNO, M
    PHYSICA D, 1985, 17 (02): : 227 - 234