Catalyst preparation for CMOS-compatible silicon nanowire synthesis

被引:68
|
作者
Renard, Vincent T. [1 ]
Jublot, Michael [1 ]
Gergaud, Patrice [1 ]
Cherns, Peter [1 ]
Rouchon, Denis [1 ]
Chabli, Amal [1 ]
Jousseaume, Vincent [1 ]
机构
[1] MINATEC, LETI, CEA, F-38054 Grenoble, France
关键词
SI NANOWIRES; OXIDATION; GROWTH; MICROSCOPY;
D O I
10.1038/nnano.2009.234
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Metallic contamination was key to the discovery of semiconductor nanowires(1), but today it stands in the way of their adoption by the semiconductor industry. This is because many of the metallic catalysts required for nanowire growth are not compatible with standard CMOS (complementary metal oxide semiconductor) fabrication processes. Nanowire synthesis with those metals that are CMOS compatible, such as aluminium(2) and copper(3-5), necessitate temperatures higher than 450 degrees C, which is the maximum temperature allowed in CMOS processing. Here, we demonstrate that the synthesis temperature of silicon nanowires using copper-based catalysts is limited by catalyst preparation. We show that the appropriate catalyst can be produced by chemical means at temperatures as low as 400 degrees C. This is achieved by oxidizing the catalyst precursor, contradicting the accepted wisdom that oxygen prevents metal-catalysed nanowire growth. By simultaneously solving material compatibility and temperature issues, this catalyst synthesis could represent an important step towards real-world applications of semiconductor nanowires(6-11).
引用
收藏
页码:654 / 657
页数:4
相关论文
共 50 条
  • [1] Catalyst preparation for CMOS-compatible silicon nanowire synthesis
    Vincent T. Renard
    Michael Jublot
    Patrice Gergaud
    Peter Cherns
    Denis Rouchon
    Amal Chabli
    Vincent Jousseaume
    [J]. Nature Nanotechnology, 2009, 4 : 654 - 657
  • [2] CMOS-Compatible Gate-All-Around Silicon Nanowire detector
    Ziaei-Moayyed, Maryam
    Okandan, Murat
    [J]. 2011 IEEE SENSORS, 2011, : 1608 - 1611
  • [3] Ultrasensitive Bioelectronic Nose Based On CMOS-Compatible Silicon Nanowire Array
    Gao, Anran
    Wang, Yi
    Yang, Xun
    Wang, Yuelin
    Li, Tie
    [J]. 2017 IEEE SENSORS, 2017, : 1413 - 1415
  • [4] CMOS-Compatible Silicon Nanowire Based Field-effect pH Sensor
    Gao, Anran
    Dai, Pengfei
    Lu, Na
    Li, Tie
    Wang, Yuelin
    [J]. 2012 INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO), 2012, : 113 - 116
  • [5] Ultra-sensitive detection of adipocytokines with CMOS-compatible silicon nanowire arrays
    Pui, Tze-Sian
    Agarwal, Ajay
    Ye, Feng
    Ton, Zhi-Qiang
    Huang, Yinxi
    Chen, Peng
    [J]. NANOSCALE, 2009, 1 (01) : 159 - 163
  • [6] CMOS-Compatible Silicon-Nanowire-Based Coulter Counter for Cell Enumeration
    Chen, Yu
    Guo, Jinhong
    Muhammad, Hamidullah
    Kang, Yuejun
    Ary, Sunil K.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (02) : 311 - 315
  • [7] CMOS-Compatible Controlled Hyperdoping of Silicon Nanowires
    Berencen, Yonder
    Prucnal, Slawomir
    Moeller, Wolfhard
    Huebner, Rene
    Rebohle, Lars
    Boettger, Roman
    Glaser, Markus
    Schoenherr, Tommy
    Yuan, Ye
    Wang, Mao
    Georgiev, Yordan M.
    Erbe, Artur
    Lugstein, Alois
    Helm, Manfred
    Zhou, Shengqiang
    Skorupa, Wolfgang
    [J]. ADVANCED MATERIALS INTERFACES, 2018, 5 (11):
  • [8] CMOS-compatible athermal silicon microring resonators
    Guha, Biswajeet
    Kyotoku, Bernardo B. C.
    Lipson, Michal
    [J]. OPTICS EXPRESS, 2010, 18 (04): : 3487 - 3493
  • [9] Top-Down Fabrication of Fully CMOS-Compatible Silicon Nanowire Arrays and Their Integration into CMOS Inverters on Plastic
    Lee, Myeongwon
    Jeon, Youngin
    Moon, Taeho
    Kim, Sangsig
    [J]. ACS NANO, 2011, 5 (04) : 2629 - 2636
  • [10] Multiplexed detection of lung cancer biomarkers in patients serum with CMOS-compatible silicon nanowire arrays
    Gao, Anran
    Yang, Xun
    Tong, Jing
    Zhou, Lin
    Wang, Yuelin
    Zhao, Jianlong
    Mao, Hongju
    Li, Tie
    [J]. BIOSENSORS & BIOELECTRONICS, 2017, 91 : 482 - 488