共 50 条
Molecular Electronic Level Alignment at Weakly Coupled Organic Film/Metal Interfaces
被引:25
|作者:
Zhao, Jin
[1
,2
,3
,4
]
Feng, Min
[4
]
Dougherty, Daniel Barker
[5
]
Sun, Hao
[1
,2
]
Petek, Hrvoje
[1
,2
,4
]
机构:
[1] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, ICQD Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[4] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[5] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
来源:
基金:
美国国家科学基金会;
关键词:
energy level alignment;
image potential;
quantum well state;
IMAGE POTENTIAL STATES;
2-PHOTON PHOTOEMISSION;
METAL INTERFACES;
DYNAMICS;
SURFACE;
SEMICONDUCTORS;
C6F6/CU(111);
FEMTOSECOND;
TRANSITION;
ENERGY;
D O I:
10.1021/nn5049969
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Electronic level alignment at interfaces of molecular materials with inorganic semiconductors and metals controls many interfacial phenomena. How the intrinsic properties of the interacting systems define the electronic structure of their interface remains one of the most important problems in molecular electronics and nanotechnology that can be solved through a combination of surface science experimental techniques and theoretical modeling. In this article, we address this fundamental problem through experimental and computational studies of molecular electronic level alignment of thin films of C6F6 on noble metal surfaces. The unoccupied electronic structure of C6F6 is characterized with single molecule resolution using low-temperature scanning tunneling microscopy-based constant-current distance-voltage spectroscopy. The experiments are performed on several noble metal surfaces with different work functions and distinct surface-normal projected band structures. In parallel, the electronic structures of the quantum wells (QWs) formed by the lowest unoccupied molecular orbital state of the C6F6 monolayer and multilayer films and their alignment with respect to the vacuum level of the metallic substrates are calculated by solving the Schrodinger equation for a semiempirical one-dimensional (1D) potential of the combined system using input from density functional theory. Our analysis shows that the level alignment for C6F6 molecules bound through weak van der Waals interactions to noble metal surfaces is primarily defined by the image potential of metal, the electron affinity of the molecule, and the molecule surface distance. We expect the same factors to determine the interfacial electronic structure for a broad range of molecule/metal interfaces.
引用
收藏
页码:10988 / 10997
页数:10
相关论文