A FLOER HOMOLOGY FOR EXACT CONTACT EMBEDDINGS

被引:83
|
作者
Cieliebak, Kai [1 ]
Frauenfelder, Urs Adrian [1 ]
机构
[1] Univ Munich, Dept Math, D-80333 Munich, Bavaria, Germany
关键词
contact manifolds; Floer homology; Rabinowitz action functional; MASLOV INDEX; MORSE-THEORY; HAMILTONIAN-SYSTEMS; SYMPLECTIC HOMOLOGY; PERIODIC-SOLUTIONS; PATH-INTEGRALS; CONJECTURE; MANIFOLDS; INTERSECTIONS; COMPLEX;
D O I
10.2140/pjm.2009.239.251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we construct the Floer homology for an action functional which was introduced by Rabinowitz and prove a vanishing theorem. As an application, we show that there are no displaceable exact contact embeddings of the unit cotangent bundle of a sphere of dimension greater than three into a convex exact symplectic manifold with vanishing first Chern class. This generalizes Gromov's result that there are no exact Lagrangian embeddings of a sphere into C(n).
引用
收藏
页码:251 / 316
页数:66
相关论文
共 50 条
  • [1] CORRECTION TO THE ARTICLE A FLOER HOMOLOGY FOR EXACT CONTACT EMBEDDINGS
    Cieliebak, Kai
    Frauenfelder, Urs Adrian
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 249 (02) : 509 - 510
  • [2] Bordered Floer homology and contact structures
    Alishahi, Akram
    Foldvari, Viktoria
    Hendricks, Kristen
    Licata, Joan
    Petkova, Ina
    Vertesi, Vera
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [3] Heegaard!Floer homology and contact structures
    Ozsváth, P
    Szabó, Z
    DUKE MATHEMATICAL JOURNAL, 2005, 129 (01) : 39 - 61
  • [4] Hamiltonian perturbations in contact Floer homology
    Igor Uljarević
    Jun Zhang
    Journal of Fixed Point Theory and Applications, 2022, 24
  • [5] Hamiltonian perturbations in contact Floer homology
    Uljarevic, Igor
    Zhang, Jun
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (04)
  • [6] ON THE CONTACT CLASS IN HEEGAARD FLOER HOMOLOGY
    Honda, Ko
    Kazez, William H.
    Matic, Gordana
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 83 (02) : 289 - 311
  • [7] The contact invariant in sutured Floer homology
    Honda, Ko
    Kazez, William H.
    Matic, Gordana
    INVENTIONES MATHEMATICAE, 2009, 176 (03) : 637 - 676
  • [8] The contact invariant in sutured Floer homology
    Ko Honda
    William H. Kazez
    Gordana Matić
    Inventiones mathematicae, 2009, 176 : 637 - 676
  • [9] Instanton Floer homology and contact structures
    John A. Baldwin
    Steven Sivek
    Selecta Mathematica, 2016, 22 : 939 - 978
  • [10] Instanton Floer homology and contact structures
    Baldwin, John A.
    Sivek, Steven
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (02): : 939 - 978