Density of states and localization lengths in one-dimensional linear chains

被引:0
|
作者
DeOliveira, MJ
Petri, A
机构
[1] Instituto de Física, Universidade de São Paulo, 05315-970 São Paulo, SP
来源
关键词
D O I
10.1142/S0217979297001131
中图分类号
O59 [应用物理学];
学科分类号
摘要
The integral equation for computing the density of states of a disordered linear chain of harmonic oscillators is interpreted as describing a stochastic Markov process, and its solution is determined by means of Monte Carlo simulation of the process. It is also shown that, in addition to the localization lengths of the eigenstates, the method allows the computation of the generalized Ljapunov exponents. Many different examples of application, ranging from systems with uncorrelated disorder to deterministic aperiodic chains, are reported.
引用
收藏
页码:2195 / 2205
页数:11
相关论文
共 50 条
  • [41] Localization properties of electronic states of one-dimensional Galois sequences
    Wan, Ruonan
    Fu, Xiujun
    SOLID STATE COMMUNICATIONS, 2010, 150 (19-20) : 919 - 922
  • [42] One-dimensional Rashba states in Pb atomic chains on a semiconductor surface
    Mihalyuk, A. N.
    Chou, J. P.
    Eremeev, S., V
    Zotov, A., V
    Saranin, A. A.
    PHYSICAL REVIEW B, 2020, 102 (03)
  • [43] Quantum Correlation in Matrix Product States of One-Dimensional Spin Chains
    祝敬敏
    Communications in Theoretical Physics, 2015, 64 (09) : 356 - 360
  • [44] Quantum Correlation in Matrix Product States of One-Dimensional Spin Chains
    Zhu Jing-Min
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2015, 64 (03) : 356 - 360
  • [45] One-dimensional Rashba states with unconventional spin texture in Bi chains
    Sheverdyaeva, P. M.
    Pacile, D.
    Topwal, D.
    Manju, U.
    Papagno, M.
    Feyer, V
    Jugovac, M.
    Zamborlini, G.
    Cojocariu, I
    Tusche, C.
    Tan, X. L.
    Hagiwara, K.
    Chen, Y-J
    Fujii, J.
    Moras, P.
    Ferrari, L.
    Vescovo, E.
    Bihlmayer, G.
    Carbone, C.
    PHYSICAL REVIEW B, 2022, 106 (04)
  • [46] Interplay of localization lengths in two-component mixtures of one-dimensional cold atoms
    Crepin, Francois
    Zarand, Gergely
    Simon, Pascal
    PHYSICA SCRIPTA, 2012, T151
  • [47] Topological photonic states in one-dimensional dimerized ultracold atomic chains
    Wang, B. X.
    Zhao, C. Y.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [48] Hyperpolarizabilities of one-dimensional Hn systems:: Second hyperpolarizability density analyses for regular and charged solitonlike linear chains
    Nakano, M
    Yamada, S
    Kiribayashi, S
    Yamaguchi, K
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1998, 70 (02) : 269 - 282
  • [49] ONE-DIMENSIONAL SOFTENING WITH LOCALIZATION
    SCHREYER, HL
    CHEN, Z
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1986, 53 (04): : 791 - 797
  • [50] DENSITY OF STATES IN A ONE-DIMENSIONAL SYSTEM WITH A COMPLEX RANDOM POTENTIAL
    GARTSHTEIN, YN
    FIZIKA TVERDOGO TELA, 1990, 32 (05): : 1302 - 1304