Nonlocal energy density functionals for pairing and beyond-mean-field calculations

被引:24
|
作者
Bennaceur, K. [1 ,2 ,3 ]
Idini, A. [2 ,4 ]
Dobaczewski, J. [2 ,3 ,5 ,6 ]
Dobaczewski, P. [7 ]
Kortelainen, M. [2 ,3 ]
Raimondi, F. [2 ,4 ]
机构
[1] Univ Lyon 1, Univ Lyon, CNRS, IN2P3,IPNL, F-69622 Villeurbanne, France
[2] Univ Jyvaskyla, Dept Phys, POB 35 YFL, FI-40014 Jyvaskyla, Finland
[3] Univ Helsinki, Helsinki Inst Phys, POB 64, FIN-00014 Helsinki, Finland
[4] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England
[5] Univ York, Dept Phys, York YO10 5DD, North Yorkshire, England
[6] Warsaw Univ, Fac Phys, Inst Theoret Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
[7] ul Obozowa 85 m 5, PL-01425 Warsaw, Poland
基金
芬兰科学院;
关键词
energy density functionals; regularized pseudopotentials; nuclear pairing; EQUATION; NUCLEI; FORCES;
D O I
10.1088/1361-6471/aa5fd7
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We propose to use two-body regularized finite-range pseudopotential to generate nuclear energy density functional (EDF) in both particle-hole and particle-particle channels, which makes it free from self-interaction and selfpairing, and also free from singularities when used beyond mean field. We derive a sequence of pseudopotentials regularized up to next-to-leading order and next-to-next-to-leading order, which fairly well describe infinite-nuclearmatter properties and finite open-shell paired and/or deformed nuclei. Since pure two-body pseudopotentials cannot generate sufficiently large effective mass, the obtained solutions constitute a preliminary step towards future implementations, which will include, e.g., EDF terms generated by three-body pseudopotentials.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] BEYOND-MEAN-FIELD APPROXIMATION FOR CLASSICAL SOLID-SOLUTIONS
    WU, ST
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (01): : 71 - 77
  • [22] State-of-the-art of beyond mean field theories with nuclear density functionals
    Luis Egido, J.
    PHYSICA SCRIPTA, 2016, 91 (07)
  • [23] Nonlocal kinetic-energy-density functionals
    GarciaGonzalez, P
    Alvarellos, JE
    Chacon, E
    PHYSICAL REVIEW B, 1996, 53 (15): : 9509 - 9512
  • [24] ELECTRONIC BAND CALCULATIONS FOR ZINCBLENDE BN WITH NONLOCAL DENSITY FUNCTIONALS
    KIKUCHI, K
    UDA, T
    SAKUMA, A
    HIRAO, M
    MURAYAMA, Y
    SOLID STATE COMMUNICATIONS, 1992, 81 (08) : 653 - 657
  • [25] CRITIQUE OF THE BEYOND-MEAN-FIELD THEORY OF THE ISOTROPIC-NEMATIC TRANSITION
    KEYES, PH
    PHYSICAL REVIEW A, 1981, 23 (04): : 2075 - 2076
  • [26] Properties of Skyrme force as a residual interaction in beyond-mean-field theories
    Tohyama, Mitsuru
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (08):
  • [27] SHAPE COEXISTENCE IN THE Ru ISOTOPES; MULTI-SPECTROSCOPIC STUDY OF 98Ru AND BEYOND-MEAN-FIELD CALCULATIONS
    Garrett, P. E.
    Makhathini, L.
    Bark, R. A.
    Rodriguez, T. R.
    Valbuena, S.
    Bildstein, V.
    Bucher, T. D.
    Burbadge, C.
    Dubey, R.
    Faestermann, T.
    Hertenberger, R.
    Kamil, M.
    Lawrie, E. A.
    Leach, K. G.
    MacLean, A. D.
    Malotana, C.
    Mehl, C.
    Mthembu, S. H.
    Mukwevho, J.
    Ngwetsheni, C.
    Ntshangase, S. S.
    Ondze, J.
    Orce, J. N.
    Rebeiro, B.
    Singh, B.
    Triambak, S.
    Vyfers, E. C.
    Wirth, H. -F.
    ACTA PHYSICA POLONICA B, 2020, 51 (03): : 799 - 806
  • [28] Nonlocal PNJL model beyond mean field
    Blaschke, D.
    Buballa, M.
    Radzhabov, A. E.
    Volkov, M. K.
    PHYSICS OF ATOMIC NUCLEI, 2012, 75 (06) : 738 - 740
  • [29] Nonlocal quark model beyond mean field
    D. Blaschke
    M. Buballa
    A. E. Radzhabov
    M. K. Volkov
    Physics of Particles and Nuclei, 2010, 41 : 921 - 923
  • [30] Nonlocal PNJL model beyond mean field
    D. Blaschke
    M. Buballa
    A. E. Radzhabov
    M. K. Volkov
    Physics of Atomic Nuclei, 2012, 75 : 738 - 740