Immersed boundary-lattice Boltzmann simulation of a rotating flat plate interacting with laminar flows

被引:2
|
作者
Wang, Zhikai [1 ]
Yao, Xiongliang [1 ]
机构
[1] Harbin Engn Univ, Coll Shipbldg Engn Univ, Harbin 150001, Heilongjiang, Peoples R China
来源
基金
美国国家科学基金会; 中国博士后科学基金; 黑龙江省自然科学基金;
关键词
Rotating flat plate; fluid-structure interaction; lattice Boltzmann method; multiple-relaxation-time; immersed boundary method; CIRCULAR-CYLINDER; SQUARE CYLINDER; NUMERICAL-ANALYSIS; FLUID; CONVECTION; DYNAMICS; EQUATION; CAVITY; WAKE;
D O I
10.1142/S0217979219501236
中图分类号
O59 [应用物理学];
学科分类号
摘要
To make an insight into the interaction characteristics of a flat plate rotating in laminar flows, the immersed boundary (IB)-lattice Boltzmann (LB) method combined with the multiple-relaxation-time (MRT) collision model in two dimensions is presented. Furthermore, an implicit velocity-correction IB method is proposed to deal with the interface of moving solid boundary interacting with fluid flows. Two valuable sub-issues are particularly highlighted in the research. One is the multiple-relaxation-time immersed boundary-lattice Boltzmann (MRT-IB-LB) implementation of the fluid-structure interface enforcing the nonslip boundary condition, and the other is the effects of rotating velocities associated with aspect ratios on the plate interacting with the flows. The model is validated with the benchmark case: the flow around a cylinder asymmetrically placed in a channel. Then the effects of different rotating velocities and aspect ratios are researched. With the increasing of aspect ratios, the vortex shedding frequency increases and the multiple dominant frequencies of the hydrodynamic force occur. The formed vortices are driven downstream and amalgamated into the dominant vortices in the biased flow. The average values of hydrodynamic forces can be enlarged by increasing aspect ratio. Additionally, the drag coefficient can be decreased but the lift coefficient is increased by increasing the rotating velocity.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] A unified immersed boundary-lattice Boltzmann flux solver (UIB-LBFS) for simulation of flows past porous bodies
    Chen, H.
    Yu, P.
    Shu, C.
    PHYSICS OF FLUIDS, 2021, 33 (08)
  • [22] An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows
    Wu, J.
    Shu, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (13) : 5022 - 5042
  • [23] Simulation of vortex shedding around cylinders by immersed boundary-lattice Boltzmann flux solver
    Yan, Haoran
    Zhang, Guiyong
    Wang, Shuangqiang
    Hui, Da
    Zhou, Bo
    APPLIED OCEAN RESEARCH, 2021, 114
  • [24] Simulation of Thermal Flow Problems via a Hybrid Immersed Boundary-Lattice Boltzmann Method
    Wu, J.
    Shu, C.
    Zhao, N.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [25] An immersed boundary-lattice Boltzmann method for gaseous slip flow
    Xu, Lincheng
    Yu, Xu
    Regenauer-Lieb, Klaus
    PHYSICS OF FLUIDS, 2020, 32 (01)
  • [26] NUMERICAL INVESTIGATION OF UNSTEADY FLOWS PAST FLAPPING WINGS WITH IMMERSED BOUNDARY-LATTICE BOLTZMANN METHOD
    Gong, C. L.
    Yuan, Z. J.
    Zhou, Q.
    Chen, G.
    Fang, Z.
    JOURNAL OF MECHANICS, 2018, 34 (02) : 193 - 207
  • [27] Wall-modeled large eddy simulation in the immersed boundary-lattice Boltzmann method
    Wang, Li
    Liu, Zhengliang
    Jin, Bruce Ruishu
    Huang, Qiuxiang
    Young, John
    Tian, Fang-Bao
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [28] Numerical study on the dynamics of primary cilium in pulsatile flows by the immersed boundary-lattice Boltzmann method
    Cui, Jingyu
    Liu, Yang
    Fu, Bingmei M.
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2020, 19 (01) : 21 - 35
  • [29] Hydrodynamic resolved simulation of a char particle combustion by immersed boundary-lattice Boltzmann method
    Jiang, Maoqiang
    Ma, Kuang
    Li, Jing
    Liu, Zhaohui
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 132
  • [30] An immersed boundary-lattice Boltzmann approach to study the dynamics of elastic membranes in viscous shear flows
    Dadvand, Abdolrahman
    Baghalnezhad, Masoud
    Mirzaee, Iraj
    Khoo, Boo Cheong
    Ghoreishi, Soheila
    JOURNAL OF COMPUTATIONAL SCIENCE, 2014, 5 (05) : 709 - 718