Decomposition of small-footprint full waveform LiDAR data based on generalized Gaussian model and grouping LM optimization

被引:21
|
作者
Ma, Hongchao [1 ,2 ]
Zhou, Weiwei [1 ]
Zhang, Liang [3 ]
Wang, Suyuan [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Collaborat Innovat Ctr Geospatial Technol, Wuhan, Peoples R China
[2] Dalhousie Univ, Inst Big Data Analyt, Dept Comp Sci, Halifax, NS, Canada
[3] Hubei Univ, Fac Resources & Environm Sci, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
full waveform LiDAR data; Gaussian decomposition; grouping LM algorithm; conventional LM algorithm; CLASSIFICATION; CALIBRATION;
D O I
10.1088/1361-6501/aa59f3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Full waveform airborne Light Detection And Ranging(LiDAR) data contains abundant information which may overcome some deficiencies of discrete LiDAR point cloud data provided by conventional LiDAR systems. Processing full waveform data to extract more information than coordinate values alone is of great significance for potential applications. The Levenberg-Marquardt (LM) algorithm is a traditional method used to estimate parameters of a Gaussian model when Gaussian decomposition of full waveform LiDAR data is performed. This paper employs the generalized Gaussian mixture function to fit a waveform, and proposes using the grouping LM algorithm to optimize the parameters of the function. It is shown that the grouping LM algorithm overcomes the common drawbacks which arise from the conventional LM for parameter optimization, such as the final results being influenced by the initial parameters, possible algorithm interruption caused by non-numerical elements that occurred in the Jacobian matrix, etc. The precision of the point cloud generated by the grouping LM is evaluated by comparing it with those provided by the LiDAR system and those generated by the conventional LM. Results from both simulation and real data show that the proposed algorithm can generate a higher-quality point cloud, in terms of point density and precision, and can extract other information, such as echo location, pulse width, etc., more precisely as well.
引用
收藏
页数:8
相关论文
共 46 条
  • [21] EXTRACTING STRCTURAL LAND COVER COMPONENTS USING SMALL-FOOTPRINT WAVEFORM LIDAR DATA
    McGlinchy, J.
    Van Aardt, J.
    Rhody, H.
    Kerekes, J.
    Ientiluci, E.
    Asner, G. P.
    Knapp, D.
    Mathieu, R.
    Kennedy-Bowdoin, T.
    Erasmus, B. F. N.
    Wessels, K.
    Smit, I. P. J.
    Wu, J.
    Sarrazin, D.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1976 - 1979
  • [22] Lidar full-waveform decomposition based on the empirical mode decomposition and Gaussian function model
    Wu Qinqin
    Qiang Shengzhi
    Li Xicai
    Wang Yuanqing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (02)
  • [23] Validation of Canopy Height Profile methodology for small-footprint full-waveform airborne LiDAR data in a discontinuous canopy environment
    Fieber, Karolina D.
    Davenport, Ian J.
    Tanase, Mihai A.
    Ferryman, James M.
    Gurney, Robert J.
    Becerra, Victor M.
    Walker, Jeffrey P.
    Hacker, Jorg M.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 104 : 144 - 157
  • [24] Gaussian mixture model with variable components for full waveform LiDAR data decomposition and RJMCMC algorithm
    Zhao, Quanhua
    Li, Hongying
    Li, Yu
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2015, 44 (12): : 1367 - 1377
  • [25] Simulation of small-footprint full-waveform LiDAR propagation through a tree canopy in 3D
    Kim, Angela M.
    Olsen, Richard C.
    Beland, Martin
    LASER RADAR TECHNOLOGY AND APPLICATIONS XX; AND ATMOSPHERIC PROPAGATION XII, 2015, 9465
  • [26] Estimation of forest structural variables using small-footprint full-waveform LiDAR in a subtropical forest, China
    Cao, Lin
    Coops, Nicholas
    Hermosilla, Txomin
    Dai, Jinsong
    2014 THIRD INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA 2014), 2014,
  • [27] Gaussian decomposition method for full waveform data of LiDAR base on neural network
    Liu, Jie
    Zhang, Xinjie
    Lv, Jing
    Li, Xinyu
    Du, Libin
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [28] EVALUATION OF SMALL-FOOTPRINT FULL-WAVEFORM AIRBORNE LIDAR INSTRUMENT REQUIREMENTS USING DIRSIG SIMULATIONS OF FORESTS
    Krause, Keith
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6093 - 6096
  • [29] Assessing the impact of broadleaf tree structure on airborne full-waveform small-footprint LiDAR signals through simulation
    Romanczyk, Paul
    van Aardt, Jan
    Cawse-Nicholson, Kerry
    Kelbe, David
    McGlinchy, Joe
    Krause, Keith
    CANADIAN JOURNAL OF REMOTE SENSING, 2013, 39 : S60 - S72
  • [30] Wavelet transform of Gaussian progressive decomposition method for full-waveform LiDAR data
    Yang Xue-Bo
    Wang Cheng
    Xi Xiao-Huan
    Tian Jian-Lin
    Nie Sheng
    Zhu Xiao-Xiao
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2017, 36 (06) : 749 - 755